207 resultados para pulsed rapid thermal annealing (PRTA)
Resumo:
6H-SiC single crystal specimens were implanted at 600 K with 100 KeV He ions to three successively increasing fluences and subsequently annealed at different temperatures ranging from 600℃ to 1200℃ in vacuum.After the annealing,the samples were investigated by using Raman scattering spectroscopy and photoluminescence spectrometry,respectively.Both of the two methods showed that the damage induced by helium-ion-implantation in the lattice is closely related to the dose.The thermal annealing brings about reco...中文摘要:对氦(He)离子高温(600K)注入6H-SiC中的辐照缺陷,在阶梯温度退火后演化行为的拉曼光谱和室温光致发光谱的特征进行了分析.这两种方法的实验结果表明,离子注入所产生晶格损伤的程度与注入剂量有关;高温退火导致损伤的恢复,不同注入剂量造成的晶格损伤需要不同的退火温度才可恢复.在阶梯温度退火下呈现出了点缺陷的复合、氦-空位团的产生、氦泡的形核、长大等特性.研究表明:高温(600K)注入在一定剂量范围内是避免注入层非晶化的一个重要方法,为后续利用氦离子注入空腔掩埋层吸杂或者制备低成本、低缺陷密度的绝缘层上碳化硅(SiCOI)材料提供了可能.
Resumo:
对氦(He)离子高温(600K)注入6H-SiC中的辐照缺陷,在阶梯温度退火后演化行为的拉曼光谱和室温光致发光谱的特征进行了分析.这两种方法的实验结果表明,离子注入所产生晶格损伤的程度与注入剂量有关;高温退火导致损伤的恢复,不同注入剂量造成的晶格损伤需要不同的退火温度才可恢复.在阶梯温度退火下呈现出了点缺陷的复合、氦-空位团的产生、氦泡的形核、长大等特性.研究表明:高温(600K)注入在一定剂量范围内是避免注入层非晶化的一个重要方法,为后续利用氦离子注入空腔掩埋层吸杂或者制备低成本、低缺陷密度的绝缘层上碳化硅(SiCOI)材料提供了可能.
Resumo:
Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.
Resumo:
In the present work, a Cz-Silicon wafer is implanted with helium ions to produce a buried porous layer, and then thermally annealed in a dry oxygen atmosphere to make oxygen transport into the cavities. The formation of the buried oxide layer in the case of internal oxidation (ITOX) of the buried porous layer of cavities in the silicon sample is studied by positron beam annihilation (PBA). The cavities are formed by 15 keV He implantation at a fluence of 2 x 10(16) cm(-2) and followed by thermal annealing at 673 K for 30 min in vacuum. The internal oxidation is carried out at temperatures ranging from 1073 to 1473 K for 2 h in a dry oxygen atmosphere. The layered structures evolved in the silicon are detected by using the PBA and the thicknesses of their layers and nature are also investigated. It is found that rather high temperatures must be chosen to establish a sufficient flux of oxygen into the cavity layer. On the other hand high temperatures lead to coarsening the cavities and removing the cavity layer finally.
Resumo:
Two kinds of Fe/Cu multilayers with different modulation wavelength were deposited on cleaved Si(100) substrates and then irradiated at room temperature using 400 keV Xe20+ in a wide range of irradiation fluences. As a comparison, thermal annealing at 300-900 degrees C was also carried out in vacuum. Then the samples were analyzed by XRD and the evolution of crystallite structures induced by irradiation was investigated. The obtained XRD patterns showed that, with increase of the irradiation fluence, the peaks of Fe became weaker, the peaks related to Cu-based fcc solid solution and Fe-based bcc solid solution phase became visible and the former became strong gradually. This implied that the intermixing at the Fe/Cu interface induced by ion irradiation resulted in the formation of the new phases which could not be achieved by thermal annealing. The possible intermixing mechanism of Fe/Cu multilayers induced by energetic ion irradiation was briefly discussed.
Resumo:
The hardness of 4H-SiC, which was high-temperature (500 K) helium-Implanted to fluences of 3 x 10(16) Ions cm(-2) and subsequently thermally annealed at the temperature ranging from 773 to 1273 K, was studied by nanoindentation It is found that the hardness of the implanted 4H-SiC increases at the first, then decreases, and then increases again with increasing annealing tempeature in the temperature range of 500-1273 K, and significant increase in hardness is observed at 773 K. The behavior is ascribed to the changes of the density, length, and tangling of the covalent Si-C bond through the recombination of point defects, clustering of He-vacancy, and growth of helium bubbles during the thermal annealing
Resumo:
Single crystals of 6H-SiC were implanted at 600 K with 100 key He ions to three successively fluences and subsequently annealed at different temperatures ranging from 873 to 1473 K in vacuum. The recovery of lattice damage was investigated by different techniques including Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy and Fourier transform infrared spectroscopy. All three techniques showed that the damage induced by helium ion implantation in the lattice is closely related to the fluence. Rutherford backscattering spectrometry/channeling data on high temperature implantations suggest that for a fluence of 3 x 10(16) He+/cm(2), extended defects are created by thermal annealing to 1473 K. Apart from a well-known intensity decrease of scattering peaks in Raman spectroscopy it was found that the absorbance peak in Fourier transform infrared spectroscopy due to the stretching vibration of Si-C bond shifted to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with increasing annealing temperature. These phenomena are attributed to different lattice damage behavior induced by the hot implantation process, in which simultaneous recovery was prevailing. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.
Resumo:
Using the Bridgeman-Stockbarger method, the KMgF3:EU2+ single crystal was grown. The color centers in unirradiated KMgF3:Eu crystal were studied. By thermal annealing, we confirmed the 422-nm emission resulted from color centers and oxygen centers, and we proved the energy transfer from EU2+ to color centers. From spectra, the relative oxygen content in crystal was calculated, and the relationships of oxygen displacing fluorine were studied.
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.