183 resultados para nuclear facilities
Resumo:
Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the pi(-)/pi(+) ratio in the following three reactions: Ca-48+Ca-48, Sn-124 +Sn-124 and Au-197+Au-197 with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 A GeV. It is shown that the sensitivity of probing the E-sym (rho) with pi(-)/pi(+) increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior Of nuclear symmetry energy at supra-saturation densities.
Resumo:
The nuclear symmetry energy E-sym(rho) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E-sym(rho) especially at supra-saturation densities, the circumstantial evidence for a super-soft E-sym(rho) from analyzing pi(-)/pi(+) ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.
Resumo:
The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.
Resumo:
In the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central Au-197 + Au-197 reaction at an incident beam energy of 400 MeV/nucleon, the effect of nuclear symmetry potential at supra-saturation densities on the preequilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron-to-proton ratio of lighter clusters with mass number A less than or similar to 3 [(n/p)(A less than or similar to 3)] is larger than that of the heavier clusters with mass number A > 3 [(n/p)(A>3)], whereas for the negative symmetry potential at supra-saturation densities the (n/p)(A less than or similar to 3) is smaller than the (n/p)(A>3). This may be considered as a probe of the negative symmetry potential at supra-saturation densities.
Resumo:
We discuss experimental evidence for a nuclear phase transition driven by the different concentrations of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in He-4-He-3 liquid mixtures. We present experimental results that reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau free energy description of critical phenomena.
Resumo:
The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.
Resumo:
We have investigated the equation of state (EOS) and single particle (s.p.) properties of asymmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone approach. We have discussed particularly the effect of microscopic three-body forces (TBF). It is shown that the TBF affects significantly the predicted properties of nuclear matter at high densities.
Resumo:
A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable Cl controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The alpha decay constant is the product of the penetrability P and assault frequency nu(0) in the fission-like model. An effective assault frequency P-nu replacing the previous assault frequency nu(0) is introduced for improvement of a fission-like model named the generalized liquid drop model (GLDM) to describe the nuclear alpha decay process more accurately. Two analytical formulae are proposed for the effective assault frequency due to experimental data within the GLDM. The improved model can be used to give accurate calculations for alpha decay half-lives.
Resumo:
We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
With the commissioning of HIRFL-CSR, HIRFL can provide heavy ion beams with energy covering the range of several MeV/u to 1 GeV/u. In this talk, the experiments on nuclear physics at different energies to be carried out with different experimental setups at HIRFL will be introduced.
Resumo:
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
Resumo:
The in medium nucleon-nucleon (N N) cross sections in isospin asymmetric nuclear matter at various densities are investigated in the frame work of Brueckner-Hartree-Fock theory with the Bonn B two-body nucleon-nucleon inter action supplemented with a new version microscopic three-body force (TBF). The TBF depresses the amplitude of cross sections at high density region. At low densities, the proton-proton and neutron-neutron cross sections decrease while the proton-neutron one increases as the asymmetry increases. But the sensitivity of the N N cross sections to the isospin a symmetry are reduced with the increasing density.
Resumo:
Using a transport model coupled with a phase-space coalescence after-burner we study the triton-He-3 relative and differential transverse flows in semi-central Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. We find that the triton-He-3 pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He-4-He-3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.