205 resultados para matrix-assisted laser desorption-mass spectrometry (MALDI-MS)
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
To study the biotransformation of arctigenin, arctigenin was anaerobically incubated with Eubacterium sp. ARC-2 of human intestinal bacteria in vitro. Arctigenin formed a molecular ion [M-H](-) in negative ion mode. The arctigenin and its metabolites were investigated directly by the electrospray ionization tandem mass spectrometry ion trap and Fourier transform ion cyclotron resonance. Arctigenin was transformed to 4',4 ''-dihydroxylenterolactone by E sp. ARC-2 through 3 types of demethylation products.
Resumo:
The iridoid glycosides in crude and processed extracts from cornus officinals have been analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry. Samples were analyzed by a reversed-phase C18 column using a binary eluent under gradient conditions. Seven iridoid glycosides could be separated and detected. The [M-H](-) ions of iridoid glycosides in the negative ion mode were observed, which reflect their molecule mass information. An in-source collision induced dissociation (in-source CID) experiment was carried out in order to identify the structures and to measure the contents of iridoid glycosides. The epimers were discovered in the experiment for the first time, namely 7 alpha-O-ethyl-morroniside and 7 beta-O-ethylmorroniside.
Resumo:
Oligonucleotide from SARS virus was selected as a target molecule in the paper. The noncovalent complexes of ginsenosides with the target molecule were investigated by electrospray ionization mass spectrometry. The effects of experimental conditions were examined firstly on the formation of noncovalent complexes. Based on the optimized experimental conditions, the interaction of different ginsenosides with the target molecule was researched, finding that the interaction orders are relative with the structure of aglycons, the length and terminal sugar types of saccharide chains in the ginsenosides. There are certain rules for the interaction between the ginsenosides and DNA target molecule. For different type ginsenosides, the interaction intensity takes the orders 20-S-protopanaxatriol > 20-S-protopanaxadiol, and panaxatriol ginsenosides > panaxadiol ginsenosides. For the ginsenosides with the same type aglycone, tri-saccharide chain > di-saccharide chain > tetra-saccharide chain and single-saccharide chain > panaxatriol. For the ginsenosides with the same tetra-saccharide chain, the ginsenosides with smaller molecule masses > the ginsenosides with larger molecule masses.
Resumo:
To study the content variation of ginsenosides and alkaloids during combination of ginseng with veratrum nigrum, the ginsenosides and alkaloids in the decoction of ginseng with veratrum nigrum were analyzed and compared by high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and electrospray ionization-mass spectrometry (ESI-MS). In the compatible decoction, eight ginsenosides and eight alkaloids. were detected, and the contents of six ginsenosides were found to be reduced, on the contrary, the contents of six alkaloids were increased. During combination of ginseng with veratrum nigrum, the contents of ginsenosides were reduced and those of the toxic alkaloids were increased. From the chemical point of view, the traditional theory is right that ginseng and veratrum nigrum are incompatible with each other.
Resumo:
Doubly charged cluster ions, besides singly charged cluster ions, from sodium and potassium nitrates were produced evidently under normal source capillary temperature of 200 degrees C in both positive and negative ion electrospray ionization (ESI) ion trap mass spectrometry. The fragmentation pathways for doubly charged cluster ions were studied in detail using ESI tandem mass spectrometry and two pathways were observed depending on the cluster sizes of alkali metal nitrates. In addition, factors that affect the formation of cluster ions were also interrogated.
Resumo:
According to their molecular mass and ESI-MSn data, the trace alkaloid isomers pseudostrychnine and strychnine N-oxide in extracts of the total alkaloids from Strychnos nux-vomical were qualitatively analyzed by electrospray ionization tandem mass spectrometry (ESI-MSn) method after rough silica gel-column chromatographic separation. We also investigated the relationship between their fragmentation mechanism and structures of the two alkaloid isomers. A new method for quickly and highly sensitively analyzing the two alkaloid isomers was proposed.
Resumo:
A high performance liquid chroatography-electrospray ionization-mass spectrometric method was developed for analysis and identification of ginsenosides from the decoction of ginseng, ginseng with trogopteroum feces and ginseng with semen raphani. Ten ginsenosides were separated and detected. The content variation of these ginsenosides was researched. The experimental results showed, that ginsenosides were less in compatible decoction than in separate one expect Ro. the stripping of ginsenosides were restrained by semen raphani and during combination of ginseng with trogopteroum feces, the precipitates were produced by ginsenosides.
Resumo:
According to the strong application background of bioflavonoid and metal-flavonoid complexes, novel electrospray ionization tandem mass spectrometry (ESI-MSn) was applied to investigate the structure and fragmentation mechanism of transition metal-rutin complexes. In the full-scan mass spectra, different stoichiometric ratios of rutin-metal complexes were found. In the reaction between rutin and Cu, four kinds of complexes with four different stoichiometric ratios were produced. In the reaction between rutin and Zn, Mn(II), and Fe(II), only two kind of complexes with stoichiometric ratios of 1:1 and 1:2 occured. In further tandem mass spectrometric experiments of different rutin-metal complexes, product fragments, came from the neutral loss of the external rhamnose and the internal glucose unit, oligosaccharide chain, aglycone, and small organic molecules. According to the MSn data, we proposed a mechanism for all fragments of the rutin-Cu complex A and the structure of two rutin-Cu complexes, C and D.
Resumo:
Seven structure analogical flavonoid aglycones have been analyzed using electrospray ionization tandem mass spectrometry (ESI-MSn) in the negative-ion mode. The spectra obtained ESI-MSn allowed us to propose plausible schemes for their fragmentation mechanism. By analyzing the product ions spectra of deprotonated molecule ions [M-H](-), some neutral diagnostic losses and specific retro Diels-Alder fragments were obtained. By using all of these characteristic fragment ions we can specially differentiate the flavone isomer.
Resumo:
Electrospray ionization tandem mass spectrometry (ESI-MSn) and the phase solubility method were used to characterize the gas-phase and solution-phase non-covalent complexes between rutin (R) and alpha-, beta- and gamma-cyclodextrins (CDs). The direct correlation between mass spectrometric results and solution-phase behavior is thus revealed. The order of the 1:1 association constants (K-c) of the complexes between R and the three CDs in solution calculated from solubility diagrams is in good agreement with the order of their relative peak intensities and relative collision-induced dissociation (CID) energies of the complexes under the same ESI-MSn condition in both the positive and negative ion modes. Not only the binding stoichiometry but also the relative stabilities and even binding sites of the CD-R complexes can be elucidated by ESI-MSn. The diagnostic fragmentation of CD-R complexes, with a significant contribution of covalent fragmentation of rutin leaving the quercetin (Q) moiety attached to the CDs, provides convincing evidence for the formation of inclusion complexes between R and CDs. The diagnostic fragment ions can be partly confirmed by the complexes between Q and CDs. The gas-phase stability order of the deprotonated CD-R complexes is beta-CD-R > alpha-CD-R > gamma-CD/R; beta-CD seems to bind R more strongly than the other CDs.
Resumo:
A novel prenylflavonol glycoside, named acetylicariin, has been isolated from the aerial parts of Epimedium koreanum Nakai. The structure has been identified by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and other chemical evidence, which has been elucidated as 8-prenylkaempferol-4'-methoxyl-3-O-alpha-L-rhamnopyranosyl-7-O-beta-D-(2''-O-acetyl)glucopyranoside.