161 resultados para interspecific relationships
Resumo:
During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.
Resumo:
To understand the present actuality of the marine ecosystem in the southern coastal water region of the Shandong Peninsula and the impact of the global change and the human activities to the marine ecosystem of the region, the macrobenthic community structure was researched based on data from 26 sampling stations carried out on four seasonal cruises from December 2006 to November 2007. The data was analyzed using PRIMER 6.0 and SPSS 15.0 software packages. The results showed that 236 macrobenthic species in total were collected from the research region by the field works. Most of the species belong to Polychaeta (76 species), Mollusca (75) and Crustacea (60). Of which, 33 species were common species by the four cruises. The dominant species were different among the four seasons, however, the polychaete species Nephtys oligobranchia and Sternaspis scutata were always dominant in the four seasons. The abundances and biomasses of the macrobenthos from the research region were variable in tire four seasons. The results of CLUSTER and MDS analysis showed that the similarities of macrobenthic structures among the stations were low, most of the similarities were at about 40% of similarity values, only that of two stations were up to 60%. In accordance with the similarity values of the macrobenthic structures, the 26 stations were clustered as six groups at arbitrary similarity level of 30%. The ABC curve indicated that the marcofauna communities in the research region had riot been disturbed distinctly. The results of BIOENV and BVSTEP (Spearman) analysis implied that the concentrations of organic matter in bottom water and heavy metal copper in sediment, water depth and temperature of bottom were the most significant environmental factors to affect the macrobentic community.
Resumo:
Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r~2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r~2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r~2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r~2 = 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r~2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.
Resumo:
The Ligularia-Cremanthodium-Parasenecio (L-C-P) complex of the Tussilagininae (Asteraceae: Senecioneae) contains more than 200 species that are endemic to the Qinghai-Tibetan Plateau in eastern Asia. These species are morphologically distinct; however, their relationships appear complex. A phylogenetic analysis of members of the complex and selected taxa, of the tribe Senecioneae was conducted using chloroplast (ndhF and trnL-F) and nuclear (ITS) sequences. Phylogenetic trees were constructed from individual and combined datasets of the three different sequences. All analyses suggested that Doronicum, a genus that has been included in the Tussilagininae, should be excluded from this subtribe and placed at the base of the tribe Senecioneae. In addition, the Tussilagininae should be broadly circumscribed to include the Tephroseridinae. Within the expanded Tussilagininae containing all 13 genera occurring in eastern Asia, Tussilago and NSPetasites diverged early as a separate lineage, while the remaining I I genera comprise an expanded L-C-P complex clade. We suggest that the L-C-P clade, which is largely unresolved, most likely originated as a consequence of an explosive radiation. The few monophyletic subclades identified in the L-C-P clade with robust support further suggest that some genera of Tussilagininae from eastern Asia require generic re-circumscriptions given the occurrence of subclades containing species of the same genus in different parts of the phylogentic tree due to homoplasy of important morphological characters used to delimit them. Molecular-clock analyses suggest that the explosive radiation of the L-C-P complex occurred mostly within the last 20 million years, which falls well within the period of recent major uplifts of the Qinghai-Tibetan Plateau between the early Miocene to the Pleistocene. It is proposed that significant increases in geological and ecological diversity that accompanied such uplifting, most likely promoted rapid and continuous allopatric speciation in small and isolated populations, and allowed fixation or acquisition of similar morphological characters within unrelated lineages. This phenomenon, possibly combined with interspecific diploid hybridization because of secondary sympatry during relatively stable stages between different uplifts, could be a major cause of high species diversity in the Qinghai-Tibetan Plateau and adjacent areas of eastern Asia. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between O. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. erythrotis diverged first, followed by O. cansus, while O. curzoniae and O. huangensis are sister taxa related to O. thibetana, The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotana, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus Ochotona would have occurred about 2.5 - 4.2 Ma ago, Yushean of Chinese mammalian age. This calculation appears to be substantiated by the fossil record.
Resumo:
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.