233 resultados para interface gestuelle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of pyridine distribution at the water/1,2-dichloroethane interface with variable phase volume ratios (r=V-0/V-W) was investigated by cyclic voltammetry. The system was composed of an aqueous droplet supported on a Ag/AgCl disk electrode covered with an organic solution or an organic droplet supported on a Ag/AgTPBCl disk electrode covered with an aqueous solution. In this way, a conventional three-electrode potentiostat can be used to study an ionizable compound transfer process at a liquid/liquid interface with a wide range of phase volume ratios (from 0.0004 to 1 and from 1 to 2500). Using this special cell we designed, only very small volumes of both phase were needed for r equal to unity, which is very useful for the investigation of the distribution of ionizable species at a biphasic system when the available amount of species is limited. The ionic partition diagrams were obtained for different phase volume ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA(+)) or ClO4- is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k(12), is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K4Fe(CN)(6) in water when the concentration of TCNQ in the DCE phase is in excess. The k(12) dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ and ferricyanide, k(21), is also obtained by SECM and these results cannot be explained by the same manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the charge transfer across the micro-liquid/liquid interface supported at the orifice of a double-barrel micropipette, namely, a theta-pipette, is reported. Simple ion transfer(TMA(+)), facilitated ion transfer (potassium ion transfer facilitated by DB18C6), and electron transfer (ferrocene and ferri/ferrocyanide system) have been investigated by cyclic voltammetry. The experimental results show that a very thin aqueous film, linking both barrels filled with the aqueous solution and the organic solution respectively, can spontaneously be formed on the outer glass surface of such a double-barrel micropipette to construct a micro-liquid/liquid interface, which provides the asymmetry of diffusion field. Such device is demonstrated experimentally which can be employed as one of the simplest electrochemical cells to investigate the charge transfer across the liquid/liquid interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphenedyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = V-o/V-w) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ionizable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard partition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The obtained results have been summarized in ionic partition diagrams, which are a useful tool for predicting and interpreting the transfer mechanisms of ionizable drugs at the liquid/liquid interfaces and biological membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass micropipettes with silanized inner walls can be filled with an organic solvent for voltammetric measurements in an aqueous solution. This arrangement was employed to investigate systematically the mechanism of facilitated potassium ion transfer by an ionophore dibenzo-18-crown-6 (DB18C6) across a micro-water/1.2-dichloroethane(W/DCE) interface supported at the tip of a silanized micropipette. Our experimental results verify that this facilitated ion transfer across the liquid/liquid interface did occur by an interfacial complexation-dissociation process (TIC-TID mechanism). The ratio of the diffusion coefficient of DB18C6 to that of its complexed ion in the DCE phase was calculated to be 1.74 +/- 0.07.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized a hydroxyphenyloxadiazole lithium complex (LiOXD) as a blue light-emitting and electron injection/transport material to be used in double-layer organic electroluminescent devices. Devices with the concise configuration of ITO/TPD/LiOXD/Al showed bright blue EL emission centered at 468 nm with a maximum luminance of 2900 cd m(-2). A current efficiency of 3.9 cd A(-1) and power efficiency of 1.1 lm W-1 were obtained. LiOXD was also examined as an interface material. The efficiency of an ITO/NPB/Alq(3)/Al device increased considerably when LiOXD was inserted between Alq(3) and aluminium. The improvement of the device characteristics with LiOXD approached that observed with the dielectric LiF salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.