427 resultados para fluorescence energy transfer
Resumo:
The near-IR emission spectra of Er3+-Tm3+ codoped 70GeS(2)-20In(2)S(3)-10CsI chalcohalide glasses were studied with an 808 nm laser as an excitation source. A broad emission extending from 1.35 to 1.7 mu m with a FWHM of similar to 160 nm was recorded in a 0.1 mol.% Er2S3, 0.5 mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460 nm and Er3+ at 1540 nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions. (C) 2008 Optical Society of America
Resumo:
应用改进DEAE-Toyopearl 650S阴离子交换柱层析从高等植物菠菜(Spinacia oleracea)中分离纯化了核心天线复合物CP43和CP47。并对它们的纯度和完整性色素种类和含量,以及色素分子的结合状态进行了研究并对色素分子间的能量传递机制进行了讨论。结果如下: 1、HPLC检测结果表明:纯化的CP43和CP47均只含Chla和β-Car两种色素分子,并且,平均每分子CP43多肽含19-20分子Chla和4-5分子β-Car;而平均每分CP47则含20-21分子Chla和3-4分子β-Car。 2、以436nm和480nm激发光激发样品得到的CP43和CP47的低温荧光发射光谱的最大荧光发射峰分别位于683nm和693nm。进一步发现,CP43和CP47,在相同条件下分别以436nm和480nm激发光激发样品得到的低温荧光发射光谱经归一化后几乎完全重叠,而且400-500nm波长范围内的激发光扫描得到的三维低温荧光发射光谱沿激发轴具有较好的对应关系,表明纯化的CP43和CP47都具有较高的完整性。 3、纯化的CP43和CP47的吸收光谱的红区最大吸收峰分别位于671nm和674nm。该光区的导数光谱均分辨出偏蓝区和偏红区两个子峰,CP43的这两个子峰分别位于669nm和682nm;而CP47的两个子峰则分别位于669nm和680nm。进一步用包含这两个子峰的高斯解析参数对红区最大吸收峰进行拟合,结果证明,拟合的曲线与实测曲线几乎完全吻合,这表明,CP43和CP47均至少包含两种不同状态的Chla分子。 3.1应用不同的变性温度处理CP43,发现随变性温度的不断提高,其红区最大吸收峰的峰值逐渐减小,四阶导数光谱分辨出的两个子峰同时减小,但差光谱显示:随处理温度的不断提高,这两个组分峰值的变化并不同步进行,较低温度范围内(55℃以下)682nm吸收峰下降明显,而较高温度范围内(55℃以上),669nm吸收峰下降明显。 同时,随处理温度不断提高CP43脱辅基蛋白的结构也在不断发生变化,其变化过程明显表现出两个跃变阶段。这两个跃变阶段分别出现在40~50℃范围内和55~60℃范围内,恰与吸收光谱两个组分峰变化的转变过程相一致。这证明,CP43中分别位于669nm和682nm的不同的色谱组分即代表两种不同结合态的Chla分子,分别简称为“CP43-669”和“CP43-682”。它们在色素蛋白复合物中所处的环境不同,因而对蛋白质结构的依赖性不同,前者更高地依赖于蛋白复合物的整体构象,而后者则主要依赖于蛋白质的二级结构。 3.2 经不同的变性温度处理的CP47,其红区最大吸收峰的峰位逐渐蓝移,而吸收峰值无明显的变化,只有当处理温度提高到65℃以后,蓝移后的吸收峰值(669nm)才开始明显减小;四阶导数光谱表现为680nm吸收峰的信号逐渐下降669nm的吸收信号逐渐明显;处理减对照差光谱只观察到680nm吸收值的逐渐减少,而几乎观察不到669nm吸收值的变化。同时,随变性温度的不断提高,CP47的脱辅基蛋白的结构也发生相应的变化与CP43不同,蛋白结构变化最大的温度范围为60℃~65℃之间,但同CP47的峰位蓝移、导数光谱中680nm信号的减小,以及差光谱中680nm吸收值的减小相一致。由此认为,同CP43一样,CP47的吸收光谱中分辨出的分别位于669nm和680nm处的两个不同光谱组分亦分别代表两种不同结合状态的Chla分子,分别简称为“CP47-669”和“CP47-680”,与CP43中的相应组分对应,它们处于不同的蛋白环境中,从而对蛋白质结构变化的依赖性不同。 3.3 CP43和CP47的CD光谱表现出明显的正负双峰,表明色素分子间存在较强的激子相互作用。随变性温度的不断提高,正负CD双峰的信号逐渐减弱,变化过程与脱辅基蛋白结构的变化以及CP43-682的变化相一致,表明色素分子间的激子相互作用更高依赖于CP43-682和CP47-680。并认为CP43-682和CP47-680可能以二聚体或多聚体的形式存在,并且二聚体或多聚体的形成依赖于蛋白天然构象。而CP43-669和CP47-669则以单体的形式位于蛋白结构中相对伸展的区域。并提出:在CP43-682以CP47-680分子之间,激发能主要以激子偶合机制进行而在CP43-669,CP47-669分子间及CP43-669至CP43-682间,CP47-669至CP47-680之间激发能则主要以Foster机制进行。 4、以488nm激发光得到的CP43和CP47的共振拉曼光谱都具有全反式构型类胡萝卜素分子的四个典型特征峰由此认为CP43和CP47中的β-Car分子亦具有全反式构型;与溶于丙酮抽体物中的β-Car分子相比较,CP43和CP47中的β-Car分子的共振拉曼光谱中具有较强的960cm~(-1)的拉曼峰,表明,CP43和CP47中的β-Car分子具有扭曲的构象。 应用经归一化后的吸收光谱与荧光激发光谱相比较的办法发现CP43和CP47中存在β-Car分子和Chla分子间的能量传递其能量传递效率分别为29.8~29.9%和52.3~56.9%。这表明,在正常条件下,CP47中β-Car分子和Chla分子间的能量传递效率远大于CP43。此外,当选用蛋白结构变化最明显的热变性温度处理样品后,发现,不论CP43还是CP47中β-Car与Chla分子间的能量传递效率大大降低,表明,这两种色素分子间的能量传递严格依赖于蛋白复合物的天然构象,并认为,正常条件下,CP43和CP47内β-Car与Chla分子间的空间距离较近,可能不大于10A,CP43和CP47相比较,CP47内这两种色素分子间的距离更近。并进一步提出,在CP43和CP47中,β-Car到Chla分子间的能量传递最大可能以Dexter的电子交换机制进行。
Resumo:
摘要 "发状念珠藻(Nostoc flagelliforme Born. Et Flah.),俗名发菜,是生长于干旱、半干旱土壤表面的陆生蓝藻,具有极强的抗旱能力。发菜光合作用方面的研究大多处于整体细胞水平,且研究手段非常有限。本实验对发菜光合特征进行深入研究,并探讨了发菜在干湿交替过程中能量传递的变化情况。 叶绿素和藻胆素是发菜细胞中两种主要的光合色素。发菜复水后光合活性完全恢复时,在室温(20℃)或低温(77K)下,其绝大部分的荧光是由于藻胆素被激发而产生。在室温下,大部分荧光来自藻胆体;当叶绿素被激发后,产生的荧光非常微弱。在低温下,藻胆素被激发后,荧光发射光谱中可分辨出藻胆蛋白、光系统Ⅰ和光系统Ⅱ的发射峰;叶绿素被激发后,荧光发射光谱包括光系统Ⅰ和光系统Ⅱ的荧光。相比之下,室温荧光发射光谱不适于用做发菜细胞光合作用方面的研究。 我们设计了一种新方法,从野生发菜细胞中分离得到类囊体膜及细胞质膜,并对其性质进行分析。发菜细胞外复杂的胶质结构使得现有破碎其它蓝藻细胞的方法无法破碎发菜细胞。通过实验发现,联合使用细胞破碎仪和毛地黄皂甙(0.3%)可有效破碎发菜细胞;并且毛地黄皂甙在低浓度下(≦0.5%),对色素与蛋白的结合不会造成破坏作用。随后,通过蔗糖密度梯度离心可将细胞质膜与类囊体膜分离。发菜类囊体膜的光谱性质与其它蓝藻相似。细胞质膜除结合有类胡萝卜素外,还结合有少量叶绿素前体。类囊体膜和细胞质膜膜脂及脂肪酸组成相似。其中,十六碳烯酸[16:1(9)]和亚麻酸[18:3(9,12,15)]是含量最高的两种脂肪酸,分别占总脂肪酸含量的三分之一左右。高含量的多不饱和脂肪酸可能和发菜极强的抗旱能力有关。 我们首次对发菜捕光色素蛋白复合物-藻胆体的组成和结构进行分析。发菜藻胆体为“3核+6杆”的半圆盘结构。组成藻胆体的藻胆蛋白包括藻蓝蛋白和别藻蓝蛋白。两个藻蓝蛋白六聚体通过连接肽组成藻胆体的“杆”结构。在“杆”结构中等量分布着两条连接肽(分子量分别为29kDa和34kDa)为杆连接肽和核杆连接肽。而“核”结构中核膜连接肽的分子量为103kDa。 发菜在无霜期,几乎每天经历一次复水-干燥过程:夜间的结露使发菜在黑暗中复水,而清晨太阳升起后,在光照下迅速失水进入休眠状态。我们研究了发菜在黑暗中的复水过程及在光照下失水过程中藻胆体与光系统能量传递的变化情况。发菜在黑暗中复水后,光系统Ⅱ活性无法恢复。藻胆体内及藻胆体与光系统Ⅰ的能量传递在5分钟内恢复;而藻胆体与光系统Ⅱ的能量传递只能部分恢复。我们设想,发菜在复水过程中通过双扳机-水和光-控制光合活性的恢复,以及在黑暗中部分恢复藻胆体与光系统Ⅱ的能量传递,将减少不必要的能量消耗与通过光合作用储备尽可能多的化学能-这两个生存策略有机的结合起来。发菜在光照下的失水过程中,光合活性在含水量降至90%前基本保持稳定,随后迅速下降。而在含水量达到150%后,藻胆体内的能量传递便开始受到抑制,并且随着含水量的降低,该抑制现象逐步加剧。这样,发菜在干燥过程中,通过抑制藻胆体内的能量传递,减少了传递到光系统Ⅱ反应中心的能量,从而避免了在光合活性下降过程中过剩光能对光系统Ⅱ产生的破坏作用。"
Resumo:
Changing the ratio of light-harvesting pigments was regarded as an efficient way to improve the photosynthesis rate in microalgae, but the underlying mechanism is still unclear. In the present study, a mutant of Anabeana simensis (called SP) was selected from retrieved satellite cultures. Several parameters related with photosynthesis, such as the growth, photosynthesis rate, the content of photosynthetic pigment, low temperature fluorescence spectrum (77K) and electron transport rate, were compared with those of the wild type. It was found that the change in the ratio of light-harvesting pigments in the mutant led to more efficient light energy transfer and usage in mutant than in the wild type. This may be the reason why the mutant had higher photosynthesis and growth rates.
Resumo:
Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the F-2(5/2) and F-2(7/2) levels of Yb3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb3+ in SiO2. Photoluminescence exitation sprectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminscence of rare-earth ions in SiO2 is very effective.
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.
Resumo:
Intra- and intermolecular relaxations of dye molecules are studied after the excitation to the high-lying excited states by a femtosecond laser pulse, using femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD). The biexponential decays indicate a rapid intramolecular vibrational redistribution (IVR) depopulation followed by a slower process, which was contributed by the energy transfer to the solvents and the solvation of the excited solutes. The time constants of IVR in both oxazine 750 and rhodamine 700 are at the 290-360 fs range, which are insensitive to the characters of solvents. The solvation of the excited solutes and the cooling of the hot solute molecules by collisional energy transfer to the surrounding takes place in the several picoseconds that strongly depend on the properties of solvents. The difference of Lewis basicity and states density of solvents is a possible reason to explain this solvent dependence. The more basic the solvent is, which means the more interaction between the solute and the neighboring solvent shell, the more rapid the intermolecular vibrational excess energy transfer from the solute to the surroundings and the solvation of the solutes are. The higher the states density of the solvent is, the more favorable the energy transfer between the solute and solvent molecules is.
Resumo:
Two beta-diketones 4,4,4-trifluoro-1-2-thenoyl-1,3-butanedione (Htta) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (Htfnb), which contain trifluoroalkyl chain, were selected as the main sensitizer for synthesizing Tm(L)(3)phen (L = tta, tfnb) complexes. The two near-infrared (NIR) luminescent thulium complexes have been covalently bonded to the ordered mesoporous material MCM-41 via a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) [The resultant mesoporous materials are denoted as Tm(L)(3)phen-MCM-41 (L = tta, tfnb)]. The Tm(L)(3)phen-MCM-41 (L = tta, tfnb) mesoporous materials were characterized by small-angle Xray diffraction (XRD) and N-2 adsorption/desorption, and they show characteristic mesoporous structure of MCM-41.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.
Resumo:
The affinity and specificity of drugs with human serum albumin (HSA) are crucial factors influencing the bioactivity of drugs. To gain insight into the carrier function of HSA, the binding of levamlodipine with HSA has been investigated as a model system by a combined experimental and theoretical/computational approach. The fluorescence properties of HSA and the binding parameters of levamlodipine indicate that the binding is characterized by one binding site with static quenching mechanism, which is related to the energy transfer. As indicated by the thermodynamic analysis, hydrophobic interaction is the predominant force in levamiodipine-HSA complex, which is in agreement with the computational results. And the hydrogen bonds can be confirmed by computational approach between levamlodipine and HSA. Compared to predicted binding energies and binding energy spectra at seven sites on HSA, levamlodipine binding HSA at site I has a high affinity regime and the highest specificity characterized by the largest intrinsic specificity ratio (ISR). The binding characteristics at site I guarantee that drugs can be carried and released from HSA to carry out their specific bioactivity.
Resumo:
We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
A detailed investigation on the adsorption behavior of Neutral Red (NR) molecules on mercaptoethane sulfonate-monolayer protected gold clusters (MES-MPCs) has been conducted by the spectroscopic method. It is found that cationic NR molecules are adsorbed on the negatively charged MPCs surfaces via electrostatic attractive forces. The absorption study shows that the optical properties of NR molecules are significantly influenced upon the adsorption. Based on the electrostatic adsorption nature and the excellent stability of MES-MPCs against the electrolytes, this association can be released by the addition of electrolyte salts, which can be monitored by both absorption and fluorescence spectroscopy. In addition, dication Ca2+ is found to be more effective in the release of NR than univalent Na+. Moreover, the MES-MPCs exert energy transfer quenching of NR fluorescence by both static and dynamic quenching. However, static quenching seems to be the dominating quenching mechanism. Furthermore, this energy transfer quenching exhibits strong dependence of Au core size, and 5.0 nm MPCs show stronger ability in quenching the NR fluorescence than that of 2.7 nm MPCs.