179 resultados para diagnostic fluorescent PCR
Resumo:
APC (allophycocyanin) is widely used for fluorescence tagging and may be a promising antioxidant agent for use within the food and pharmaceutical industries. Chromophore attachment to apo-ApcA (apo-APC alpha-subunit without chromophore) can be auto-catalysed both in vitro and in vivo. In the present study, a plasmid containing genes of apo-ApcA and chromophore synthetases (HOI (ferredoxin-dependent haem oxygenase) and PcyA (phycocyanobilin:ferredoxin oxidoreductase)] was constructed and expressed in Escherichia coli. The results show that holo-ApcA (APC alpha-subunit with chromophore) can be synthesized by autocatalysis in E. coli. Recombinant holo-ApcA showed the same spectral and fluorescent properties as PC (phycocyanin) and could serve as a good substitute for native PC for fluorescent tagging. Moreover, recombinant ApcA can inhibit hydroxyl and peroxyl radicals more strongly than holo-ApcA and native APC. The EC50 values were 296.4 +/- 22.4 mu g/ml against hydroxyl radicals and 38.5 +/- 2.6 mu g/ml against peroxyl radicals.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel multidomain C-type lectin gene from scallop Chlamys farreri (designated as Cflec-4) was cloned by RACE approach based on EST analysis. The full-length cDNA of Cflec-4 was of 2086 bp. The open reading frame was of 1830 bp and encoded a polypeptide of 609 amino acids, including a signal sequence and four dissimilar carbohydrate-recognition domains (CRDs). The deduced amino acid sequence of CflecA shared high similarities to other C-type lectin family members. The phylogenetic analysis revealed the divergence between the three N-terminal CRDs and the C-terminal one, suggesting that the four CRDs in Cflec-4 originated by repeated duplication of different primordial CRD. The potential tertiary structure of each CRD in Cflec-4 was typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The tissue distribution of Cflec-4 mRNA was examined by fluorescent quantitative real-time PCR. In the healthy scallops, the Cflec-4 transcripts could be only detected in gonad and hepatopancreas, whereas in the Listonella anguillarum challenged scallops, it could be also detected in hemocytes. These results collectively suggested that CflecA was involved in the immune defense of scallop against pathogen infection and provided new insight into the evolution of C-type lectin superfamily. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Penaeidin from Chinese shrimp (Fenneropenaeus chinensis) has proved to be one of the most important antimicrobial peptides in the bodies of animals. The relative quantitative real-time PCR method is developed to study through time, the mRNA expression profile of penaeidin in the muscle and haemocyte tissue of Chinese shrimp infected with vibrio (Vibrio anguillarum) and WSSV (white spot syndrome virus). Research results showed that the same pathogens infection experiments produced similar gene expression profile in different tissues while different expression profiles appeared in the same tissues infected by different exterior pathogens. In vibrio infection experiments, a "U" Re expression profile resulted. Expression levels of penaeidin increased and surpassed the non-stimulated level, indicating that penaeidin from Chinese shrimp has noticeable antimicrobial activities. In WSSV infection experiments, the expression profile appeared as an inverse "U" with the expression of penaeidin gradually decreasing to below baseline level after 24 h. The expression of antimicrobial peptides gene in mRNA level in response to virus infection in shrimp showed that international mechanisms of virus to haemocytes and microbial to haemocytes are completely different. Decline of penaeidins expression levels may be due to haemocytes being destroyed by WSSV or that the virus can inhibit the expression of penaeidins by yet undiscovered modes. The expression profiles of penaeidin in response to exterior pathogen and the difference of expression profiles between vibrio and WSSV infection provided some clues to further understanding the complex innate immune mechanism in shrimp.
Resumo:
Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. The full-length cDNA of Zhikong scallop Chlamysfarreri HSP90 (designated CfHSP90) was cloned by EST and rapid RACE techniques. It was of 2710 bp, including an open reading frame (ORF) of 2181 bp encoding a polypeptide of 726 amino acids with all the five HSP90 family signatures. BLAST analysis revealed that the CfHSP90 gene shared high similarity with other known HSP90 genes. Fluorescent real-time quantitative RT-PCR was used to examine the expression pattern of CfHSP90 mRNA in haemocytes of scallops exposed to Cd2+, Pb2+ and Cu2+ for 10 and 20 days, respectively. All the three heavy metals could induce CfHSP90 expression. There was a clear dose-dependent expression pattern of CfHSP90 after heavy metals exposure for 10 days or 20 days. Different concentrations of the same metal resulted in different effects on CfHSP90 expression. The results indicated that CfHSP90 responded to various heavy metal stresses with a dose-dependent expression pattern as well as exposure time effect, and could be used as a molecular biomarker in a heavy metal polluted environment. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays key roles in the folding, maintenance of structural integrity and regulation of a subset of cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted molecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expression level of AiHSP90 transcript was up-regulated and reached maximal. level at 9 h after injection, and then dropped progressively to the original level at about 48 h post challenge. The results indicated that AiHSP90 was potentially involved in the immune responses against bacteria challenge in scallop A. irradian. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Allophycocyanin ( APC) is a phycobiliprotein with various biological and pharmacological properties. An expression vector containing five essential genes in charge of biosynthesis of cyanobacterial APC holo-alpha subunit ( holo- ApcA) was constructed, resulting in over- expression of a fluorescent holo- ApcA in E. coli. After being cultured for 16 h, the dry cell density reached 22.5 gl(-1), and the expression of holo- HT- ApcA was up to 1 gl(-1) broth. The recombinant protein showed similar spectral features to native APC.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A molecular approach was developed to distinguish species of red snappers among commercial salted fish products. The specific fragments of the mitocliondrial 12S rRNA gene, which were about 450 bp, were obtained using the semi-nested polymerase chain reaction (semi-nested PCR). Subsequently, PCR amplicons were sequenced, aiming to select restriction endonucleases that generated species-specific restriction fragment length polymorphism (RFLP) profiles. Discrimination of red snappers Lutjanus sanguineus, L. erythopterus from L. argentintaculatus, L. malabarius and other morphologically similar fishes such as Lethrinus leutjanus and Pinjalo pinjalo was feasible by one restriction digestion reaction with three endonucleases Hae III, Sca I and SnaB I, however, for differentiation of L. sattguineus and L. erythopterus, another restriction digestion reaction with single restriction endonuclease Mae II was needed. The seminested PCR-RFLP was demonstrated to be reliable in species identification of salted fish products in this study. (c) 2005 Published by Elsevier Ltd.
Resumo:
Allophycocyanin (APC), a cyanobacterial photosynthetic phycobiliprotein, functions in energy transfer as a light-harvesting protein. One of the prominent spectroscopic characteristics of APC is a strong red-shift in the absorption and emission maxima when monomers are assembled into a trimer. Previously, holo-APC alpha and beta subunits (holo-ApcA and ApcB) were successfully synthesized in Escherichia coli. In this study, both holo-subunits from Synechocystis sp. PCC 6803 were co-expressed in E. coli, and found to self-assemble into trimers. The recombinant APC trimer was purified by metal affinity and size-exclusion chromatography, and had a native structure identical to native APC, as determined by characteristic spectroscopic measurements, fluorescence quantum yield, tryptic digestion analysis, and molecular weight measurements. Combined with results from a study in which only the monomer was formed, our results indicate that bilin synthesis and the subsequent attachment to apo-subunits are important for the successful assembly of APC trimers. This is the first study to report on the assembly of recombinant ApcA and ApcB into a trimer with native structure. Our study provides a promising method for producing better fluorescent tags, as well as a method to facilitate the genetic analysis of APC trimer assembly and biological function.
Resumo:
The glutathione peroxidases are essential enzymes of the cellular antioxidant defence system. In the present study, the full-length cDNA sequence encoding an extracellular glutathione peroxidase (designated CfGPx3) was isolated from Zhikong scallop Chlamys farreri. The complete cDNA was of 1194 bp, containing a 5' untranslated region (UTR) of 50 bp, a 3' UTR of 490 bp and an open reading frame (ORF) of 654 bp encoding a polypeptide of 217 amino acids. CfGPx3 possessed all the conserved features critical for the fundamental structure and function of glutathione peroxidase, such as the selenocysteine encoded by stop codon UGA, the GPx signature motif ((96)LGVPCNQFI(103)) and the active site motif ((WNFEKF184)-W-179). The high similarity of CfGPx3 with GPx from other organisms indicated that CfGPx3 should be a new member of the glutathione peroxidase family. By fluorescent quantitative real-time PCR, the CfGPx3 mRNA was universally detected in the tissues of haemocytes, gill, gonad, muscle and hepatopancreas with the highest expression in hepatopancreas. After scallops were challenged by Listonella anguillarum, the expression level of CfGPx3 transcript in haemocytes was significantly up-regulated (P<0.05) at 8 h post challenge. These results suggested that CfGPx3 was potentially involved in the immune response of scallops and perhaps contributed to the protective effects against oxidative stress. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The globular C1q-domain-containing (C1qDC) proteins are a family of versatile pattern recognition receptors via their globular C1q (gC1q) domain to bind various ligands including several PAMPs on pathogens. In this study, a new gC1q-domain-containing protein (AiC1qDC-1) gene was cloned from Argopecten irradians by rapid amplification of cDNA ends (RACE) approaches and expressed sequence tag (EST) analysis. The full-length cDNA of AiC1qDC-1 was composed of 733 bp, encoding a signal peptide of 19 residues and a typical gC1q domain of 137 residues containing all eight invariant amino acids in human C1qDC proteins and seven aromatic residues essential for effective packing of the hydrophobic core of AiC1qDC-1. The gC1q domain of AiC1qDC-1, which possessed the typical 10-stranded beta-sandwich fold with a jelly-roll topology common to all C1q family members, showed high homology not only to those of Cl qDC proteins in mollusk but also to those of C1qDC proteins in human. The AiC1qDC-1 transcripts were mainly detected in the tissue of hepatopancreas and also marginally detectable in adductor, heart, mantle, gill and hemocytes by fluorescent quantitative real-time PCR. In the microbial challenge experiment, there was a significant up-regulation in the relative expression level of AiC1qDC-1 in hepatopancreas and hemocytes of the scallops challenged by fungi Pichia pastoris GS115, Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Listonella anguillarum. The recombinant AiC1qDC-1 (rAiC1qDC-1) protein displayed no obvious agglutination against M. luteus and L. anguillarum, but it aggregated P. pastoris remarkably. This agglutination could be inhibited by D-mannose and PGN but not by LPS, glucan or D-galactose. These results indicated that AiC1qDC-1 functioned as a pattern recognition receptor in the immune defense of scallops against pathogens and provided clues for illuminating the evolution of the complement classical pathway. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A molecular approach was developed to distinguish species of red snappers among commercial salted fish products. The specific fragments of the mitochondrial 12S rRNA gene, which were about 450bp, were obtained using the semi-nested polymerase chain reaction (semi-nested PCR). Subsequently, PCR arnplicons were sequenced, aiming to select restriction endonucleases that generated species-specific restriction fragment length polymorphism (RFLP) profiles. Discrimination of red snappers Lutjanus sanguineus, Lutjanus erythopterus from Lutjanus argentimaculatus, Lutjanus malabarius and other morphologically similar fishes such as Lethrinus leutjanus and Pinjalo pinjalo was feasible by one restriction digestion reaction with three endonucleases Hae III, Sca I and SnaB I, however, for discrimination of L. sanguineus and L. erythopterus, another restriction digestion reaction with single restriction endonuclease Mae II was needed. The semi-nested PCR-RFLP was demonstrated to be reliable in species identification of salted fish products in this study. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Heart disease is one of the main factor causing death in the developed countries. Over several decades, variety of electronic and computer technology have been developed to assist clinical practices for cardiac performance monitoring and heart disease diagnosis. Among these methods, Ballistocardiography (BCG) has an interesting feature that no electrodes are needed to be attached to the body during the measurement. Thus, it is provides a potential application to asses the patients heart condition in the home. In this paper, a comparison is made for two neural networks based BCG signal classification models. One system uses a principal component analysis (PCA) method, and the other a discrete wavelet transform, to reduce the input dimensionality. It is indicated that the combined wavelet transform and neural network has a more reliable performance than the combined PCA and neural network system. Moreover, the wavelet transform requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced.
Resumo:
利用PCR-DGGE技术对长江口外低氧区海域和黄海冷水团海域的细菌群落组成进行了分析。 长江口外低氧区海域的细菌群落组成分析结果为:对获得的25条DGGE条带进行了克隆、测序,所得到的序列进行了系统进化分析(细菌16S rRNA基因V3区序列),分别归属于4个细菌类群:变形菌门(Proteobacteria)、拟杆菌门(Bacteroides)、厚壁菌门(Firmicutes)和蓝细菌门(Cyanobacteria)。其中有16条分别与变形细菌亚群的γ和δ-Proteobacteria相似。通过时空分析发现,低氧水体的细菌群落组成与非低氧水体的组成是不同的。低氧水体的优势菌群是拟杆菌门(Bacteroides)中的Flavobacteria。 黄海冷水团海域的细菌群落组成和优势菌群分析结果为:细菌16S rDNA V3区特征片段经DGGE分离、条带切割,共得到24条DGGE条带,克隆、测序后,将所得序列进行系统进化分析,分别归属于2个细菌类群:变形细菌门(Proteobacteria)和拟杆菌门(Bacteroides)。在24条序列中有16条分别与变形细菌亚群的γ和δ-Proteobacteria相似,有5条与拟杆菌门相似。通过时空分析发现,10月份(冷水团存在期),冷水团内部水体的细菌群落组成包括γ-Proteobacteria、δ-Proteobacteria和Bacteroides,而冷水团外部的水体的细菌群落组成包括γ-Proteobacteria和Bacteroides。冷水团内部水层的优势菌群为γ-Proteobacteria。4月份虽然冷水团没有形成,但是所调查的海域海水温度都不高,在7℃-12℃范围内,所以4月份所有站位,不管是底层的还是总的的细菌群落组成都与10月份冷水团内部(海水温度低于10℃)水体的相同,与10月份冷水团外部(海水温度大于19℃)的不同。