202 resultados para cross-metathesis
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
A new kind of electroactive polymers was synthesized by using aniline pentamer (AP) cross-linking chitosan (CS) in acetic acid/DMSO/DMF solution. UV-vis and CV confirmed the electroactivity of polymers in acidic aqueous solution. The amphiphilic polymers self-assembled into 200-300 nm micelles by dialysis against deionized water from the acetic acid buffer solution. Three samples with different weight percentages of AP were used to identify the relationship between the content of AP and the differentiation of rat neuronal pheochromocytoma PC-12 cells without external stimulation.
Resumo:
A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.
Resumo:
Hollow carbon nanofibers with circular and rectangular opening were prepared by using electrospun silica fibers as templates. Silica fibers were synthesized by electrospinning, and they were coated with a carbon layer formed by thermal decomposition and carbonization of polystyrene under a nitrogen atmosphere. Hollow carbon nanofibers with circular and rectangular openings were then obtained after the silica core was etched by hydrofluoric acid. The carbon nanofibers with different morphologies also could be used as templates to fabricate silicon carbide fibers. The silicon carbide fibers with circular and rectangular openings could be obtained by using hollow carbon nanofibers and carbon belts as templates, respectively.
Resumo:
We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.
Resumo:
A highly efficient Pd(OAc)(2)/guanidine aqueous system for the room temperature Suzuki cross-coupling reaction has been developed. The new water-soluble and air-stable catalyst Pd(OAc)(2)(.)(1f)(2) from Pd(OAc)(2) and 1,1,3,3-tetramethyl-2-n-butylguanidine (1f) was synthesized and characterized by X-ray crystallography. In the presence of Pd(OAc)(2)(.)(1f)(2), coupling of arylboronic acids with a wide range of aryl halides, including aryl iodides, aryl bromides, even activated aryl chlorides, was carried out smoothly in aqueous solvent to afford the cross-coupling products in good to excellent yields and high turnover numbers (TONs) (TONs up to 850 000 for the reaction of 1-iodo-4-nitrobenzene and phenylboronic acid). Furthermore, this mild protocol could tolerate a broad range of functional groups.
Resumo:
A new sterically hindered monooxychlorophosphine was synthesized and the complex generated in situ from its reaction with Pd-2(dba)(3) promoted the Suzuki-Miyaura reactions of arylboronic acids with aryl chlorides in good yields.
Resumo:
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macrorners were characterized by H-1 NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.
Resumo:
Poly(ethylene glycol) (PEG) networks were synthesized by gamma-irradiation. The crystalline behavior of PEG was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). It was shown that the crystallinity of PEG is dramatically lower in the cross-linked, networks than in pure PEG. When the molecular weight of PEG in the networks decreased to 1000, it could not crystallize at all. Moreover, we also found that the melting temperature of PEG is greatly affected by the presence of a cross-linked network.
Resumo:
Binary CNBR/PP-g-GMA and ternary CNBR/PP/PP-g-GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP-g-GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP-g-GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP-g-GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP-g-GMA, T, of PP-g-GMA in CNBR/PP-g-GMA blends increased about 10degreesC. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP-g-GMA in CNBR/PP-g-GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP-g-GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP-g-GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP-g-GMA blends were greatly improved.
Resumo:
Boronic pinacol ester group is not reactive in Kumada, Heck and Stille coupling reaction conditions. Fluorene-based sophisticated organoboron compounds were synthesized by means of Palladium catalyzed Kumada, Heck and Stille cross-coupling reactions from halofluorenyl boronic esters.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Crystallization behavior and spherulitic structure of linear high-density polyethylene (HDPE), after being irradiated in its molten state by gamma -rays, was investigated by small-angle laser scattering (SALS) and differential scanning calorimetry (DSC). Significant changes in the crystallization of HDPE during cooling in air before and after being irradiated in the melt were observed. A critical minimum average molar mass between cross-links (200 carbon-carbon bonds) for spherulite formation in such an irradiated HDPE network was obtained.
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.