184 resultados para basalt source
Resumo:
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
Resumo:
A core from the source region of the Kuroshio warm current (east of the Luzon Island) was analyzed using several proxies in order to study the variability of the Western Pacific Warm Pool (WPWP) during the last two glacial-interglacial cycles. Primary productivity (PP) variations were deduced from variations in the coccolith flora. Primary productivity was higher during glacial periods (the end of Marine Isotope Stage [MIS] 3, some periods in MIS 2 and 6), and decreased during interglacial periods (MIS 7, MIS Se and probably MIS 5c-5d), with the lowest PP in MIS 5e. variations in the delta C-13 difference in benthic and bulk carbonate, thus in the vertical gradient of delta C-13 in dissolved inorganic carbon (Delta delta C-13(c). (wuellerstorfi-N. dutertrei) and Delta delta C-13(c.) (wuellerstorfi-coccolith)) Coincided With the PP Changes, showing that export productivity was low during interglacial periods (MIS 7, MIS 5e and Holocene) and high during glacial periods (MIS 6, probably MIS 5c-5d, late MIS 4 and late MIS 3). Comparison of foraminiferal carbonate dissolution indicators and PP changes reveals that nannofossil assemblage in core Ph05-5 is not sensitive to carbonate dissolution intensity. The depth of the thermocline (DOT) was estimated from planktonic forminiferal assemblages, and was relatively greater during interglacial periods (MIS 7, MIS 5e, probably MIS 5c and Holocene) than during glacials (middle MIS 6, probably MIS 5b and 5d, some periods in MIS 4, MIS 3 and MIS 2). Good coherence between the paleoproductivity records and the DOT suggests that the DOT changes could be the primary control factor in changes of paleoproductivity, and the glacial high productivity in the Kuroshio source region could be associated with a global increase of nutrient concentration in the intermediate waters that upwelled into the photic zone. The low CO2 values derived for intervals of high productivity and a relatively shallow DOT suggest that the changes in biological productivity and DOT in the equatorial Pacific could have modified atmospheric CO2 concentrations. High Sea Surface Temperatures (SSTs) during the warm MIS 5e in combination with intensified monsoonal rain fall could have resulted in a more intense stratification of the upper waters, resulting in low nutrient supply to the surface waters and a resulting decrease in productivity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The simulating wave nearshore (SWAN) wave model has been widely used in coastal areas, lakes and estuaries. However, we found a poor agreement between modeling results and measurements in analyzing the chosen four typical cases when we used the default parameters of the source function formulas of the SWAN to make wave simulation for the Bohai Sea. Also, it was found that at the same wind process the simulated results of two wind generation expressions (Komen, Janssen) demonstrated a large difference. Further study showed that the proportionality coefficient alpha in linear growth term of wave growth source function plays an unperceived role in the process of wave development. Based on experiments and analysis, we thought that the coefficient alpha should change rather than be a constant. Therefore, the coefficient alpha changing with the variation of friction velocity U (*) was introduced into the linear growth term of wave growth source function. Four weather processes were adopted to validate the improvement in the linear growth term. The results from the improved coefficient alpha agree much better with the measurements than those from the default constant coefficient alpha. Furthermore, the large differences of results between Komen wind generation expression and Janssen wind generation expression were eliminated. We also experimented with the four weather processes to test the new white-capping mechanisms based on the cumulative steepness method. It was found that the parameters of the new white-capping mechanisms are not suitable for the Bohai Sea, but Alkyon's white-capping mechanisms can be applicable to the Bohai Sea after amendments, demonstrating that this improvement of parameter alpha can improve the simulated results of the Bohai Sea.
Resumo:
Organic carbon (OC), total nitrogen (TN), and Pb-210 in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using Pb-210 chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.
Resumo:
The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.
Resumo:
A geochemical study of Bohai Bay surface sediments was carried out to analyze the potential harmful element (PHE: Ge, Mo, In, Sn, Sb,Te, Tl, Bi and V) concentrations, transportation and deposition, enrichment factors and sources. Germanium, Mo, In, Sn, Sb, Te, Tl, Bi and V concentrations in the surface sediments were: 1.43-1.71, 0.52-1.43, 0.04-0.12, 2.77-4.14, 1.14-2.29, 0.027-0.085, 0.506-0.770, 0.27-0.63 and 70.35-115.90 mu g/g, respectively. The distributions of total PHE concentrations, together with sequential extraction analyses, showed that the PHEs were mainly due to natural inputs from the continental weathering delivered to the bay by rivers and atmospheric transportation and deposition. However, high Mo, Sb, Te, Bi and V occurred in non-residual fractions, suggesting some anthropogenic inputs in addition to the natural inputs. Besides sources, the distributions of PHEs were influenced by the coupling of physical, chemical and biological processes. Enrichment factor (EF) was computed for each site for each element in order to assess the polluting elements and the degree of pollution at each site. Results revealed that the EFs were generally lower than 1.0, particularly for Ge, Mo, In, Sn, Tl and V; however, the EFs were higher (>1.5), particularly for Sb, Te and Bi, revealing moderate contamination. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.
Resumo:
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berbefine is an excellent corrosion inhibitor for mild steel immersed in 1M H2SO4. Potentiodynamic curves suggested that berbefine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 x 10(-4) M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berbefine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Stable carbon isotopes of organic matter originated from different soil layers (0~5 cm, 5~15 cm, 15~25 cm, 25~35 cm, 35~50 cm, 50~65 cm) were investigated in the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences. The preliminary results indicated that δ13C values of soil organic matter increased with increased soil depth. δ13C of soil organic carbon in 0~5 cm layer showed the lowest value, -25.09‰; while 50~65 cm soil layer possessed the lowerδ13C value, -13.87‰. Based on mass balance model of stable isotopes, it was proposed that the percentage of C4 carbon source tend to increase with increased soil depth. The preliminary study indicated that alpine meadow might have undergone a successive process from C4-dominated community to C3-dominated one. However, changing δ13C values in atmospheric CO2 overtime and different processes of soil organic carbon formation (or eluviation) might somewhat contribute to increasing δ13C values. In this case, mass balance model would underestimate C3 community and overestimate C4 community.
Resumo:
This thesis bases on horizontal research project “The research about the fine structure and mechanical parameters of abutment jointed rock mass of high arch dam on Jinping Ⅰ Hydropower Station, Yalong River” and “The research about the fine structure and mechanical parameters of the columnar basalt rock mass on Baihetan Hydropower Station, Jinsha River”. A rounded system about the fine structure description and rock mass classification is established. This research mainly contains six aspects as follow: (1) Methods about fine structure description of the window rock mass; (2) The window rock mass classification about the fine structure; (3) Model test study of intermittent joints; (4) Window rock mass strength theory; (5) Numerical experimentations about window rock mass; (6) The multi-source fusion of mechanical parameters based on Bayes principle. Variation of intact rock strength and joint conditions with the weathering and relaxation degree is studied through the description of window rock mass. And four principal parameters: intact rock point load strength, integration degree of window rock mass, joint conditions, and groundwater condition is selected to assess the window rock mass. Window rock mass is classified into three types using the results of window rock mass fine structure description combined with joints develop model. Scores about intact rock strength, integrality condition, divisional plane condition and groundwater conditions are given based on window rock mass fine structure description. Then quality evaluation about two different types of rock mass: general joint structure and columnar jointing structure are carried out to use this window rock mass classification system. Application results show that the window rock mass classification system is effective and applicable. Aimed at structural features of window structure of “the rock mass damaged by recessive fracture”, model tests and numerical models are designed about intermittent joints. By conducting model tests we get shear strength under different normal stress in integrated samples, through samples and intermittent joints samples. Also, the changing trends of shear strength in various connectivity rates are analyzed. We numerically simulate the entire process of direct shear tests by using PFC2D. In order to tally the stress-strain curve of numerical simulation with experimental tests about both integrated samples and through samples, we adjust mechanical factors between particles. Through adopting the same particle geometric parameter, the numerical sample of intermittent joints in different connective condition is re-built. At the same time, we endow the rock bridges and joints in testing samples with the fixed particle contacting parameters, and conduct a series of direct shear tests. Then the destructive process and mechanical parameters in both micro-prospective and macro-prospective are obtained. By synthesizing the results of numerical and sample tests and analyzing the evolutionary changes of stress and strain on intermittent joints plane, we conclude that the centralization of compressive stress on rock bridges increase the shear strength of it. We discuss the destructive mechanics of intermittent joints rock under direct shear condition, meanwhile, divide the whole shear process into five phases, which are elasticity phase, fracture initiation phase, peak value phase, after-peak phase and residual phase. In development of strength theory, the shear strength mechanisms of joint and rock bridge are analyzed respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. Some sets of numerical simulation methods, i.e. the distinct element method (UDEC) based on in-situ geology mapping are developed and introduced. The working methods about determining mechanical parameters of intact rock and joints in numerical model are studied. The operation process and analysis results are demonstrated detailed from the research on parameters of rock mass based on numerical test in the Jinping Ⅰ Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Results about numerical simulation study show that we can get the shear strength mechanical parameters by changing the load conditions. The multi-source rock mass mechanical parameters can be fused by the Bayes theory, which are test value, empirical value and theoretical value. Then the value range and its confidence probability of different rock mass grade are induced and these data supports the reliability design.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
A mafic-ultramafic complex belt well developed in Eastern Tianshan, Xinjiang, NW China, which contains a series of Cu-Ni sulfide deposits. This area is the important production basis for Cu-Ni deposits, including Tulargen deposit, Hulu deposit, Huangshan-Huangshandong deposit, Hulu deposit, Xiangshan deposit, Tianyu deposit, Chuanzhu deposit. In China, especially Eastern Tianshan, it is prevalent that large Cu-Ni deposits occurred in small intrusions, typically including Jinchuan, Kalatongke, et al., so the ore-forming mechanism and evaluation rule for those small intrusions are very meaningful and of universal significance. On the basis of the research to typical Cu-Ni deposits, ore-forming conditions and processes are summarized through which to evaluate the ore-bearing potential for barren intrusions and unexplored mafic-ultramafic intrusions. By the contrast, metallogenic rule and mechanism of ore genesis are concluded, and evaluation system is preliminarily set up on the basis of these conclusions. Quantitatively simulation for the composition of olivine is introduced for the first time in China to discuss the interaction between magma and sulfide, and a new method to calculate the Mg-Fe composition of primitive magma is developed. Interaction between magma and sulfide liquid is used to get the Ni content in sulfide liquid. Sulfur isotopic characteristics in sulfide minerals in country rocks and ores are used to judge crustal sulfur introduction, which is applied for the first time in China. Re-Os isotopic characteristics are related to the ore-forming process, to interpret the process of enrichment of chalcophile elements. On the basis of the evaluation system, Mati, Chuanzhu, Luodong, Xiadong, those intrusions are evaluated to their ore-bearing potential. According to the studies to typical Cu-Ni deposits, conduit-type ore-forming model is set up, and the characteristics of the model are concluded systematically. The evaluation system and conduit-type ore-forming model can be helpful to the evaluation of mafic-ultramafic intrusions in this and similar mafic-ultramafic intrusion belts. The studied typical deposits and mafic-ultramafic intrusion include Tulargen deposit, Hulu deposit, Huangshandong deposit, Chuanzhu deposit, Mati intrusion,Luodong intrusion, Xiadong intrusion, and others. Through studies, there are similar characteristics for Tulargen and Hulu deposits in magma origin, composition of primitive magma(MgO=12.5%, FeO=12% and MgO=11%, FeO=10.5% respectively), magma evolution, mechanism of sulfide segregation and conduit-type ore-forming process. By Re-Os isotopic system, the ore forming date of Tulargen deposit is 265.6±9.2Ma, which is consistent to regional metallogenic event, but little younger. The Mg-Fe composition of primitive magma of Baishiquan, Huangshandong area, Kalatongke is lower than that of Tulargen and Hulu deposit, showing common basalt composition. The Mg# value(Mg#=(Mg/Mg+Fe)increases gradually from Kalatongke to Baishiquan to Huangshan-Huangshandong East. Baishiquan intrusions show relatively higher crustal contamination by evidence of trace element, which indicates the lower magma original source, from depleted mantle to crust. One break is the discovery of komatiitic intrusion, Xiadong intrusion, which shows characteristics of highly magnesium (Max Fo=96). The primitive magma is calculated of MgO=28%,FeO=9%, belonging to komatiitic magma. Tectonic evolution of Eastern Tianshan is discussed. By the statistics of ore-forming data of porphyry copper deposits, magmatic sulfide Cu-Ni deposits, orogenic hydrothermal gold deposits, we believe that those deposits are the successive products of oceanic subduction, are and back-arc basin collision and post-orogenic extention. And Cu-Ni sulfide deposits and orogenic gold deposits occurred in the stage of post-orogenic extention. According to the conclusions, the conduit-type ore-forming mechanism of magmatic sulfide deposit is set up, and its characteristics and conditions are concluded as well. The conduit-type ore-forming system includes magma generation, sulfide segregation, enrichment of chalcophile elements, interaction of sulfide and magma, sulfide collection in limited space in magma conduit and bottom of the chamber, which make a whole ore-forming system.The ore-forming process of Cu-Ni sulfide deposits is concluded as three steps: 1. mantle derived magma rises upward to the middle-upper crust; 2. magma suffers crustal contamination of different degrees and assimilates crustal sulfur, which leads to sulfur saturation and sulfide segregation. Sulfide liquid interacts with magma and concentrates chalcophile elements; 3. enriched sulfide located in the conduit(Tulargen) or bottom of the chamber (Hulu). Depleted magma rises upward continuously to form barren complexes. For the practical cases, Tulargen deposit represents the feeding conduit, and Hulu deposit represents the bottom of the staging magma chamber. So the deeper of west of Tulargen and southwest of Hulu are the favorite locate for ore location. The evaluation for ore potential can be summarized as follows: (1) Olivine can be served as indicator for magma evolution and events of sulfide segregation; (2) Sulfur isotopic characteristics is an efficient method to judge sulfur origin for magmatic sulfide deposit; (3) Re-Os content of the ores can indicate interaction between sulfide and silicate magma and crustal contamination; (4) PGE mineralization is effected by degree of partial melting of mantle; (5) Cu/Zr is efficient parameter to judge sulfide segregation; (6) The effects of multiple magma fractionation and emplacement are important, for inverse order shows the destruction to previous solid lithofacies and orebodies. Mati, Chuanzhu, Xiadong, Luodong, mafic-ultramafic intrusions are evaluated using evaluation system above. Remarkable Ni depletion is found in olivine of Mati, and southwest of the intrusion can be hopeful location for ore location. Chuanzhu intrusion has remarkable evidence of sulfide segregation, but the intrusion represents the narrow feeder conduit, so the wide part of the conduit maybe the favorite location for sulfide to deposit. The ore potential of Luodong and Xiadong is not good. Both the intrusions show no Ni depletion in olivine, and there is no sulfide in country rocks, so no crustal sulfur is added into the magmatic system. For Sidingheishan, a very large intrusion, the phenomenon of sulfide segregation is found, but there are no favorite places for sulfide to deposit. So the Cu-Ni ore potential maybe not good, but PGE mineralization should be evaluated further.
Resumo:
The Chinese Altai is one of the most important volcanogenic massive sulfide (VMS) deposit districts in China. All orebodies were lenticular or bedded and stratabounded by a suite of early Devonian volcanic-sedimentary rocks. Hydrothermal feeder zones developed under some of the orebodies. All the ores are massive or laminated, and show typical characteristics of VMS deposit. Based on the mineralizing time and the metal assembles, we divide 3 metallogenic stages: 1, Fe orefroming stage associated with basaltic and sedimentary rocks during very early Devonian; 2, Cu-Pb-Zn oreforming stage associated with rhyolitic and sedimentary rocks during early Devonian; 3, Cu-Zn oreforming stage in the dacitic and basaltic rocks during mid. Devonian. The hosting rocks for all orebodies are different, but they show very similar geochemical and isotopic characteristics. All the felsic rocks show enriched lighted rare earth elements (REE) patterns (La/Yb>5), and with an obvious Eu negative anomalies (Eu/Eu*<0.6). In the meanwhile, all the mafic rocks show flat REE pattern and no Eu anomalies. The Ashele basalt show an apparent Ce negative anomalies (Ce/Ce* <0.76), All the volcanic roks in Chinese Altai show the decoupled property between the high field strength elements (HFSE) and large ion lithophile elements (LILE). The negative Nb, Ta characteristics with respect to adjacent elements indicate that subduction-modified source. The Nd(t) of the hosting rocks for all orebodies changed in a small range (-1.5~5), and the (87Sr/86Sr)i change in a big range. The initial Sr value of the hosting rocks in Mengku and Tiemuerte are obviously affected by the seawater (0.705~0.710), and initial Sr values of hosting rocks Ashele change in a small range (0.704~0.706). All Sr-Nd isotopes of ores have the same range with the hosting rocks, indicating that both the ores and volcanic rocks have the same island arc source. The mean sulfur isotopes of sulfides from Ashele and Mengku are 6.2‰ and 3.4‰, respectively, indicating a deep magmatic source. However, the sulfur isotopes of sulfides from Keketale, Tiemuerte and Keyinbulake changed in -15.8‰~9.9‰, -23.5‰~1.87‰, -8.3‰~1.6‰, respectively. And the big sulfur isotope range indicated that the sulfur of the ores was a combination biogenic and magmatic source. All volcanic rocks from the VMS deposits in the southern Chinese Altai show a typical subduction related environments. Based on the regional and locally geological evidence, here we propose that the southern Chinese Altai is an island arc system, and all VMS deposits formed during the lateral accretion process. No VMS deposit formed during the formation of the island arc during Silurian; Fe VMS deposit formed during the beginning of the opening of the backarc basin in very early Devonian; Cu-Pb-Zn VMS deposits formed during the mature stage of the backarc basin in early Devonian; at last the Cu-Zn VMS deposit formed during the rifted stage of the island arc itself.
Resumo:
The dissertation focuses on the petrology, geochemistry of the volcanic rocks in east Tibet and southeast Yunnan. It lucubrates the Magmatic process, forming mechanism and the possible tectonic settings of the volcanic rocks. The volcanic rocks of Nangqen basin in east Tibet, Qinghai province are mainly Cenozoic intermediate-acid shoshonites. The rocks are LREE enriched and the LREE/HREE = 3~34; (La/Yb)_N = 18.17-53.59, and ΣREE 222~1260μg/g. There are no Eu anomaly, and Nb, Ta, Zr, Hf, Ti are markedly depleted. The isotopic composition is ~(87)Sr/~(86)Sr = 0.70497~0.70614, ~(206)Pb/~(204)Pb = 18.622~18.974, ~(208)Pb/~(204)Pb = 38.431~38.996, ~(207)Pb/~(204)Pb = 15.511~15.613, respectively. K-Ar age of the whole rocks and the single mineral are between 32.0-36.5Ma. Based on the trace elements and isotopic elements, we get the conclusion that the partial melting is one of the dominated forming mechanisms for the volcanic rocks in Naneqen basin. The magma did not experience the crustal contamination en route to the surface; however, the complex mixture took place in the upper mantle before the melt was formed. There are at least two kinds of mixed sources that can be identified. The basalt in southeast Yunnan province is studied. They are distributed in Maguan, Tongguan, and Pingbian County, which is located on the both sides of the Red River belt, and the ultrabasic xenolith are cursory introduced. The volcanic rocks belongs to the alkali series, which can be subdivided into trachybasalt and basanite(Ol normal molecule >5). The volcanic rocks are characteristics by high Ti and low Mg#. According to the magma calculation model, the original rocks of the basalt in southeast Yunnan province are Spinel Lherzolite in Tongguan, Garnet Lherzolite in Pingbian and Maguan, while Togguan undergoes 2-5 percent and percent of partial melting, whereas volcanism in Maguan and Pingbian was so complex to calculate. The fractional crystallization took place during the magma evoltion in southeast Yunnan. The basalt is enriched in LREE with LREE/HREE=9.23-20.19. All of the trace elements display weak Nb, Ta peak, and the depletion of Zr, Hf and Ti in Maguan and pingbian represent the presence of Garnet in the source. The composition of the isotope ratio are ~(87)Sr/~(86)Sr = 0.70333-0.70427, ~(143)Nd/~(144)Nd = 0.512769-0.512940, ~(206)Pb/~(204)Pb = 18.104-18.424, ~(207)Pb/~(204)Pb = 15.483 -15.527; ~(208)Pb/~(204)Pb = 37.938-38.560, respectively, which shows the characteristics of the HIMU type OIB. The volcanic rocks of the southwest Yunnan are derived from the enriched, OIB type mantle sources by synthesizing all the data from trace and isotope elements. It is similar to that of the volcanic rocks in Hawaii, a typical kind of the mixtures of the recycled oceanic crust plume and depleted asthenosphere. To sum up, the volcanic rocks in southeast Yunnan are formed by the intraplate hotpot volcanism.
Resumo:
The continental mantle geochemical characteristics and crust-mantle evolution in the west of Yangtze Plate was discussed through the study of some within-plate basic-ultrabasic rocks from Lower Proterozoic to Later Paleozoic in this paper. In the Lower Proterozoic, the plate subduction between the pre-Tethys Proterozoic Ocean Plate and paleo-Yangtze Plate induced some basic volcanic formed in the island arc-back arc surrounding, which were represented by Ailaoshan Group-Dibadu Formation-Dahongshan Group, and there existed EM I component in the mantle source. The Middle Proterozoic Caiziyuan peridotite was formed in the epicontinental basin at the ocean-land boundary or within-continent rift basin. Its mantle source could be metasomatized by the dehydration fluid of subducted plate, and much initial radioactive ~(143)Nd was added to the source. In the Later Proterozoic, some rifts at the epicontinent or within-continent was formed due to the pre-Tethys oceanic plate subduction, and within-plate hot-spot Dahongshan diabase came into being. The whole-rock isochronal age of diabase is 1066±110Ma, and its mantle source was enriched Nd isotope and trace element which was related to the primary volatile component from asthenosphere and mantle plume. Its mantle source was included "FOZO" component representing mantle plume. The layer ultramafic rocks located at the Panxi Rift in the Middle-Later Paleozoic were resulted from different period and source. The early ultramafic indicated the incipient action of Panxi Rift, which is residue of continental lithospheric partial melting. Its mantle source involved subducted material and had distinct EM II component. The Emeishan basalt in the Later Paleozoic was typical continental flood basalt and its source also contained EM II component. The subduction of paleo-Tethys Ocean Plate provided essential dynamic condition for the large-scale opening of Panxi Rift, while the mantle plume supplied much material for Emeishan basalt. However, the plume was contaminated by the metasomatized continental mantle lithosphere in its upwelling process, which resulted in the Sr isotopic and incompatible elemental enrichment, and the Nd isotope kept down the weak-depleted character of mantle plume. The magmatic history in the west of Yangtze Plate is the tectonic process between pre-Tethys, paleo-Tethys Oceanic Plate and Yangtze Plate in a long history. Due to the subduction of oceanic plate, the crustal source material took part in the crust-mantle evolution widely. the continental mantle lithosphere in the west of Yangtze Plate was metasomatized by the fluid released by the subducted plate and the primary volatile from deeper mantle, and the mantle source include obvious enriched component.