165 resultados para aggregation function
Resumo:
This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.
Resumo:
In bacteriophage, transcription elongation is regulated by the N protein, which binds a nascent mRNA hairpin ( termed boxB) and enables RNA polymerase to read through distal terminators. We have examined the structure, energetics and in vivo function of a number of N boxB complexes derived from in vitro protein selection. Trp18 fully stacks on the RNA loop in the wild-type structure, and can become partially or completely unstacked when the sequence context is changed three or four residues away, resulting in a recognition interface in which the best binding residues depend on the sequence context. Notably, in vivo antitermination activity correlates with the presence of a stacked aromatic residue at position 18, but not with N boxB binding affinity. Our work demonstrates that RNA polymerase responds to subtle conformational changes in cis-acting regulatory complexes and that approximation of components is not sufficient to generate a fully functional transcription switch.
Resumo:
Two kinds of polyethylene chain aggregation with chain axis perpendicular and parallel to the supported substrate were designed and successfully obtained from melt under an electric field and by melt-drawn method
Resumo:
Aggregation behavior of two amphiphilic D-pi -A molecules bearing barbituric acid as both recogniton group and electron-drawing substituent, 5-(4-dodecyl oxybenzylidene)-(1H, 3H)-2,4,6-pyrimidine trione (PB12) and 5-(4-N,N-didodecyl aminobenzylidene)-(1H,3H)-2,4,6-pyrimidine trione (AB(12)) was studied by UV-visible, fluorescence, and surface voltaic spectroscopies (SPS). The experimental results indicate that PB12 tends to form J-aggregate and AB(12) tends to form H-aggregate under increasing concentration. An intramolecular twisted charge transfer (TICT) emission around 500 nm is observed when J-aggregate is formed between PB12 molecules, and an excimer emission around 600 nm is observed when H-aggregate is formed between AB(12) molecules.
Resumo:
Polyamide (PA)1010 is blended with a saturated polyolefin elastomer, ethylene-cu-olefin copolymer (EOCP). To improve the compatibility of PA1010 with EOCP, different grafting rates of EOCP with maleic anhydride (MA) are used. The reaction between PA1010 and EOCP-g-MA during extrusion is verified through an extraction test. Mechanical properties, such as notched Izod impact strength, elongation at break, etc., are examined as a function of grafting rate and weight fraction of elastomer. It was found that in the scale of grafting rate (0.13-0.92 wt %), 0.51 wt % is an extreme point for several mechanical properties. Elastomer domains of PA1010/ EOCP-g-MA blends show a finer and more uniform dispersion in the matrix than that of PA1010/EOCP blends. For the same grafting rate, the average sizes of elastomer particles are almost independent on the contents of elastomer, but for different grafting rates, the particle sizes are decreased with increasing grafting rate. The copolymer formed during extrusion strengthens the interfacial adhesion and acts as an emulsifier to prevent the aggregation of elastomer in the process of blending. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Thin films of an organo-soluble polyimide based on 1,4-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and 2,2'-dimethyl-4,4'-methylene dianiline (DMMDA) have been studied. A prism coupler was used to measure the refractive indices. The average refractive indices of thin films prepared by annealing at different temperatures and times were chosen to characterize the condensation states of thin films. Thin films annealed at 200 degrees C show irreversible changes in physical properties, eg solubility. FTIR spectroscopy showed that the chain structures of the above thin films remained unchanged. It is proposed that specific molecular interactions induce the irreversible changes revealed by fluorescence spectroscopy. (C) 2000 Society of Chemical Industry.
Resumo:
The UV-visible absorption and fluorescence spectra of a soluble polyimide, YS-30, in several organic solvents were measured over a wide range of concentration. The experimental results show that there exist both intramolecular and intermolecular electron donor acceptor interactions for YS-30 molecules. The fluorescence behavior of YS-30 in N,N-dimethylacetamide and in chloroform solutions is similar in general, except that its ground-state intermolecular charge transfer emission is more obvious in N,N-dimethylacetamide solution. This difference is attributed to the greater extent of disruption of the chain packing by solvent or/and the more efficient radiationless energy dissipation process from the excited state complexes to chloroform. The intensity ratio of intermolecular charge transfer emission to intramolecular charge transfer emission is used to characterize the state of aggregation of YS-30 molecules in solutions. The plot of this ratio versus concentration indicates the existence of two critical concentrations. It is also found from the same plot that the decrease of coil size is very pronounced during the initial stage of shrinkage.
Resumo:
The synchronous fluorescence spectra of hemoglobin solutions are reported for the first rime. The main fluorescence peaks observed in the spectra are assigned. The effect of the concentration of hemoglobin solution on the spectra is studied. Characteristic fluorescence peaks due to the dimer and tetramer of hemoglobin molecules are recognized. (C) 1998 Academic Press.
Resumo:
Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The aggregation slate of polyimide in solution and in the solid state were studied using the NMR and fluorescence techniques. The experiment results show that the decay of spin-spin relaxation of polyimides with concentration can be described as a single exponential, biexponential, triexponential, biexponential profile. Meanwhile, the intensities of fluorencence spectra increase rapidly with the concentration, and some peaks have a red-shift. Based upon these experiment results, it can be concluded that polyimide in solution is very flexible, and there are several critical concentrations at which polyimide has distinctly different aggregation states. The existence of intermolecular charge transfer interaction between polyimide chains has been proved, and the interaction has a profound effect on the glass transition temperature, T-g, and the dynamic mechanical modulus of polyimide. (C) 1997 Elsevier Science Ltd.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.
Resumo:
Penaeid shrimp, as an invertebrate, relies on the innate immunity to oppose the microbial invaders. Antimicrobial peptides (AMP) are an integral component of the innate immune system in most organisms and function as an early first line of defense against pathogens, but the knowledge about the pathways to regulate the shrimp AMP gene expression is still absent up to date. In the current study, a Relish homolog (FcRelish) was cloned from Chinese shrimp Fenneropenaeus chinensis. The full length cDNA of FcRelish consists of 2157 bp, including 1512 bp open reading frame, encoding 504 amino acids. The predicted molecular weight of FcRelish is 57 kDa, and the theoretical PI is 7.00. Spatial expression profiles showed that FcRelish had the highest expression levels in the hemocytes and lymphoid organ. Both Vibrio anguillarium and Micrococcus lysodeikticus stimulation to shrimp can affect the transcription profile of FcRelish. Silencing of FcRelish through DsRNA interference can greatly change the transcription profile of AMP. Therefore, we suggest that FcRelish identified in the present study is closely related to the transcription of AMP, and then we inferred that Imd pathway might exist in shrimp. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings
Resumo:
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker potypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed. (c) 2005 Elsevier B.V. All rights reserved.