204 resultados para X-ray powder diffractometry
Resumo:
Four self-immobilized FI catalysts with allyl substituted phenoxy-imine ligands [{4-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2) MCl2] (1: M = Ti: 2: M = Zr), [{3-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2)MCl2] (3: M = Zr), [{4-(CH2=CHCH2-2,6-(iso-C3H7)(2))C6H5N=CH-C6H3(3,5-(NO2)(2))O}(2)MCl2] (4: M = Zr) have been synthesized and characterized. The molecular structure of 2 has been determined by X-ray crystallographic analysis. The results of ethylene polymerization showed that the self-immobilized titanium (IV) and zirconium (IV) catalysts 1-3 kept high activity for ethylene polymerization and 4 showed no activity. SEM showed the immobilization effect could greatly improve the morphology of polymer particles to afford micron-granula polyolefin as supported catalysts.
Resumo:
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5), (x=0-0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase increases with increasing A] and Mo content in the alloys. The P-C isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (v = 0) to 397.6 mAh g(-1) (x = 0.6) and then decreases to 370.4 mAh g(-1) (x= 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x=0) to 73.8% (x=0.8) at the discharge current density of 1200 mA g(-1). Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x.
Resumo:
The electrical, magnetic and transport properties of Zn doped polycrystalline samples of Sr2Fe1-xZnxMoO6 ( x = 0, 0.05, 0.15 and 0.25) with the double perovskite structure have been investigated. The subtle replacement of Fe3+ ions by Zn2+ ions facilitates the formation of a more ordered structure, while further substitution leads to disordered structure because of the presence of a striped phase. Analysis of the x-ray powder diffraction patterns based on Rietveld analysis indicates that the replacement of Fe3+ by Zn2+ ions favours the formation of Mo6+ ions. The spin-glass behaviour can be explained on the basis of the competition between the antiferromagnetic superexchange and the ferromagnetic double-exchange interaction. The low-field magnetoresistance was moderately enhanced at x = 0.05, and its origin was found to be the competition between the decrease of the concentration of the itinerant electrons and the weaker antiferromagnetic superexchange in the antiphase boundaries. An almost linear negative magnetoresistance in moderate field has been observed for x = 0.25. A possible double-exchange mechanism is proposed for elucidating the observations; it also suggests a coexistence of (Fe3+, Mo5+) and (Zn2+, Mo6+) valence pairs.
Resumo:
In this paper, we will report the preparation of a mixed-valence polyoxometalate compound (Bu4N)(4)[PMo12O40].2DMF.H2O (TBA = tetrabutylammonium; DMF = N,N-dimethyl formamide). The title compound has been photochemically synthesized and characterized by using elemental analysis, IR, solid diffusion reflectance electronic spectra, ESR spectra, XPS, CV and X-ray single-crystal analysis. The crystal lographic data are as follows: monoclinic, P2(1)/c, a = 14.124(3), b = 17.481(4), c = 22.744(5) Angstrom, beta = 101.66(3)degrees, V = 5500(2) Angstrom(3), C70H160Mo12N6O43P, M-r = 2956.29, Z = 2, D-c = 1.785 g/cm(3), F(000) = 2970 and mu(MoKalpha) = 1.412 mm(-1). The structure has been refined to R = 0.0638 and wR = 0.1975 by full-matrix least-squares methods. The title compound is composed of four tetrabutylammonium cations, one [(PMoMo11O40)-Mo-V](4-) heteropoly anion, two N,N-dimethyl formamide and one H2O molecule.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.
Resumo:
The title complex [(VB1)(2)DMFHPMo12O40.5DMF, VB1 = vitamin B-1 (thiamine chloride), DMF = N,N-dimethylformamide] has been synthesized and characterized by elemental analysis, IR, UV-Vis, electron spin resonance, X-ray photoelectron spectroscopy and cyclic voltammetry methods. The X-ray crystal structure revealed that there is one independent molecule in the unit cell of the title complex that contains one mixed-valence heteropolyanion, two VB1+ cations and six DMF molecules. The title complex possesses a centrosymmetrical arrangement in the unit cell, with the P atom at the symmetry center of the heteropolyanion and with eight O atoms surrounding the central P atom, such that two sets of PO4 tetrahedra are formed. The PO4 tetrahedra and MoO66-(7-) octahedra are disordered in the heteropolyanion. The bond distances of P-O-a and Mo=O-d are in the ranges 1.57 (4)-1.70 (4) Angstrom and 1.61 (2)-1.67 (2) Angstrom, respectively.
Resumo:
The influence of nanodispersed clay on the alpha crystalline structure of polyamide 6 (PA6) was examined in-situ with X-ray diffraction (XRD) between room temperature and melting. In pure PA6 upon annealing the alpha crystalline phase was substituted by an unstable pseudohexagonal phase at 150degreesC, then it transformed into a new stable crystalline structure - high temperature alpha' phase above the transition temperature. However, in PA6/clay nanocomposite (PA6CN), the alpha phase did not present crystalline phase transition on heating. The increase in the annealing temperature only led to continuous intensity variation. The different behaviors were caused by the confined spaces formed by silicate layers, which constrained the mobility of the polymer chains in-between.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
A new bimetallic cluster complex with the formula [{Co(phen)(2)}(2)V4O12](H2O)-H-. was synthesized from the hydrothermal reaction of V2O5, H2C2O4, Co(NO3)(2), 1,10-phenanthroline (phen), (C4H9)(4)NOH and water. The compound crystallizes in an orthorhombic system with space group Pbcn and unit cell parameters a = 19.106(3) Angstrom, b = 15.250(3) Angstrom, c = 16.321(2) Angstrom, V = 4755.4(13) Angstrom(3), Z = 4 and R = 0.0318. The bimetallic cluster complex [{Co(phen)(2)}(2)V4O12](H2O)-H-. is composed of a discrete V4O124- cluster eovalently attached to two [Co(phen)(2)](2+) fragments and the discrete hexanuclear bimetallic clusters of [{Co(phen)(2)}(V4O12)-V-2](H2O)-H-. are further extended into interesting three-dimensional supermolecular arrays via pi-pi stacking interactions of phen groups. Other characterizations by elemental analysis, IR, and thermal analysis are also described.
Resumo:
The title heteropoly blue, (Bu4N)(6)H-10 [(PMo11MoO40)-Mo-VI-O-V](4) . H2O has been photochemically synthesized and characterized with elemental analysis, solid diffusion reflectance electronic spectra, CV, ESR, XPS, IR spectra, conductivity measurement and X-ray single crystal analysis. The crystallographic data for C96H218Mo48N6O169P4 are as follows: M-r = 8889.76, triclinic, P (1) over bar, a = 1.4142 (3) nm, b = 2.6027 (5) nm, c = 2.6403(5) nm, alpha = 113.96(3)degrees, beta = 90.05(3)degrees, gamma = 105.71(3)degrees, V = 8.481 (3) nm(3), Z = 1, D-c = 1.741 g/cm(3), F (000) = 4264, mu = 1.798 mm(-1). The X-ray crystal structure analysis reveals that there Is one independent molecule in the unit cell of the title heteropoly blue which contains four mixed-valence heteropoly anions, six tetrabutylammonium cations and one water molecule. Its molecular structure possesses a centrosymmetrical arrangement in the unit cell. The phosphorus atom is In the crystallographic inversion center of the heteropoly anion and the eight oxygen atoms surrounding central phosphorus atom comprise of a distorted hexahedron. Heteropolyanion has two equal sets of PO4 tetrahedron. The PO4 tetrahedron and the MoO6 octahedron in the polyanion are greatly distorted.
Resumo:
The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.
Resumo:
The hexafluorophosphate salts [Fe((C5H4Bu)-Bu-t)(2)]PF6 (1) and [Co((C5H4Bu)-Bu-t)(2)]PF6 (2) crystallize in isotypic structures with centrosymmetric cations which have a staggered (transoid) conformation of the exactly parallel ring Ligands (conformational angle tau = 180 degrees). The tetrachlorocobaltate salt, [CO((C5H4Bu)-Bu-t)(2)](2)CoCl4 (3), contains one almost eclipsed (tau = 140.4 degrees) and one almost staggered (tau = 101.4 degrees) cobaltocenium cation; in both cases, the cyclopentadienyl ring planes are slightly inclined (by alpha = 5.4 degrees and 4.1 degrees, respectively) to give more room to the tert-butyl substituents which are bent away from the metal in all three complexes 1 - 3.
Resumo:
Crystal and molecular structure of (2.6-dipropylphenylamide) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained from a mixture of ether/hexane as orthorhombic. with a = 12.658 (3) Angstrom. b = 16.62 (3) Angstrom. c = 11.760 (2) Angstrom. V = 2474.2 (9) Angstrom(3). Z = 4, space group Pnma. R = 0.0399; Componud I compose of the pi-bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.