174 resultados para Viewpoints simulation
Resumo:
The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.
Resumo:
A new structure of solution elements and conservation elements based on rectangular mesh was pro- posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec- ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation. And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu- lated by the improved CE/SE scheme and the numerical results were compared with those obtained by other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and the numerical results were carefully compared with the experimental data and theoretical results based on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat- terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.
Resumo:
Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum /particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.
Resumo:
A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.
Resumo:
Bucket Foundations under Dynamic Loadings The liquefaction deformation of sand layer around a bucket foundation is simulated under equivalent dynamic ice-induced loadings. A simplified numerical model is presented by taking the bucket-soil interaction into consideration. The development of vertical and horizontal liquefaction deformations are computed under equivalent dynamic ice-induced loadings. Firstly, the numerical model and results are proved to be reliable by comparing them with the centrifuge testing results. Secondly, the factors and the development characteristics of liquefaction deformation are analyzed. Finally, the following numerical simulation results are obtained: the liquefaction deformation of sand layer increases with the increase of loading amplitude and with the decrease of loading frequency and sand skeleton’s strength. The maximum vertical deformation is located on the sand layer surface and 1/4 times of the bucket’s height apart from the bucket’s side wall (loading boundary). The maximum horizontal deformation occurs at the loading boundary. When the dynamic loadings is applied for more than 5 hours, the vertical deformation on the sand layer surface reaches 3 times that at the bottom, and the horizontal deformation at 2.0 times of the bucket height apart from the loading boundary is 3.3% of which on the loading boundary.
Resumo:
Firstly, the main factors are obtained by use of dimensionless analysis. Secondly, the time scaling factors in centrifuge modeling of bucket foundations under dynamic load are analyzed based on dimensionless analysis and control- ling equation. A simplified method for dealing with the conflict of scaling factors of the inertial and the percolation in sand foundation is presented. The presented method is that the material for experiments is not changed while the effects are modified by perturbation method. Thirdly, the characteristic time of liquefaction state and the characteristic scale of affected zone are analyzed.
Resumo:
Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the water-wetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.
Resumo:
More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.
Resumo:
The imaging technology of stimulated emission depletion (STED) utilizes the nonlinearity relationship between the fluorescence saturation and the excited state stimulated depletion. It implements three-dimensional (3D) imaging and breaks the diffraction barrier of far-field light microscopy by restricting fluorescent molecules at a sub-diffraction spot. In order to improve the resolution which attained by this technology, the computer simulation on temporal behavior of population probabilities of the sample was made in this paper, and the optimized parameters such as intensity, duration and delay time of the STED pulse were given.
Resumo:
In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14, 113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses.
Resumo:
We demonstrate that the parametric resonance in a magnetic quadrupole trap can be exploited to cool atoms by using Bird's method. In our programme the parametric resonance was realized by anisotropically modulating the trap potential. The modulation frequency dependences of temperature and fraction of the trapped atoms are explored. Furthermore, the temperature after the modulation as functions of the modulation amplitude and the mean elastic collision time are also studied. These results are valuable for the experiment of parametric resonance in a quadrupole trap.