162 resultados para Uranium-Lead Isotope
Resumo:
Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.
Resumo:
As a part of Gangdisi-Nianqingtanggula plate, Cuoqin basin (N 29°3O'~33°20'; E 80°~90°) is situated in the west of the Tibet autonomous Region, with an area of 100000 square kilometers. Cretaceous shallow-water carbonate is widely distributed in this basin. Its accumulative thickness is more than 1000 meters. Sedimentary facies of cretaceous shallow-water carbonate and carbon isotope feature are studied in details here. On basis of two main sections researched comprehensively, five facies marks are found. With the combination of Wilson's model and ramp model, a platform-mild slope model are put forward, which is thought to be a comprehensive model for this area. There are three sedimentary circles which are comprised of terrestrial clastic tidal flat and carbonate platform facies in Duoba Member of Duoni Formation. Langshan Formation is mainly comprised of carbonate platform facies. We also studied the carbon isotope features influenced by Cretaceous Aptian-Albian's oceanic anoxic events (OAE). After correlating the δ~(13)C curves of the studied section with that of Peregrina Canyon section in Mexico, we find that there are similar δ~(13)C curves fluctuation styles, namely there is also a δ~(13)C positive excursion in shallow-water carbonate in the studied area, and the degree of δ~(13)C positive excursion in shallow-water carbonate is much higher. There are two main causes which should interpret above δ~(13)C positive excursion feature: on the one hand ,much organic carbon take much 12C off when they are buried with a higher speed during the OAE, which lead to the ~(12)C rise of oceanic total dissolved carbon (TDC),on the other hand, during the OAE there are stratification structures in pale-ocean, in the upper mixed layer with high carbon fixation (HCML). There are so much plankton organisms which absorb much ~(12)C as the ~(13)C of shallow-water carbonate in this layer rise higher. Furthermore, on the basis of the theories of carbonate isotope strata, we suggest that the currently used boundary between Aptian and Albian in the studied area is possibly above the international one, which means the main parts of Duoba Member of Duoni Foramatiom in this area should be belong to Albian in stead of Aptian.
Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China