211 resultados para UP-CONVERSION LUMINESCENCE
Resumo:
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Omega(6) and S-ed/(S-ed + S-md) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Omega(6) as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of F-4(9/2) and S-4(3/2) states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Yb3+/ Er3+-codoped oxychloride germanate glasses have been synthesized by a conventional melting and quenching method. Structural properties were obtained based on Raman-spectra investigation, indicating that PbCl2 plays an important role in the formation of the glass network and has an important influence on the phonon density and the maximum phonon energy. The Judd - Ofelt intensity parameters and quantum efficiencies were calculated based on the Judd - Ofelt theory and lifetime measurements. The enhanced upconversion luminescence intensity of Er3+ with increasing PbCl2 content could not be explained only by the maximum phonon-energy change of the host glasses. For the first time, the effect of PbCl2 addition on phonon density, OH- content, and upconversion luminescence in oxychloride glasses has been discussed and evaluated. The results show that the effect of phonon density and OH- content on upconversion luminescence in oxychloride glasses is much stronger than that of the decrease of the maximum phonon energy. The possible upconversion luminescence mechanisms have also been estimated and are discussed.
Resumo:
To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm3+/Yb3+-codoped oxyhalide tellurite glasses were investigated under 980nm excitation. The results showed that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at TM2O3% =0.1 mol%, and then decrease with increasing Tm2O3 content. The effect of TM2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+ -doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3% = 3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novel oxyfluoride glasses are developed with the composition of 30SiO(2)-15Al(2)O(3)-28PbF(2)-22CdF(2)-0.1TmF(3)-xYbF(3) -(4.9-x) AlF3(x = 0, 0.5, 1.0, 1.5, 2.0) in mol fraction. Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and bear infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm3+: D-1(2) -> F-3(4), (1)G(4) -> H-3(6), (1)G(4) -> F-3(4), and H-3(4) -> H-3(6), respectively, are observed. Due to the sensitization of Yb3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.
Resumo:
Tm3+-Yb3+ codoped oxyfluoride silicate glasses suitable for upconversion laser has been fabricated. In this paper, effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+ codoped oxyfluoride silicate glasses have been systematically investigated. The experimental results indicate that, with the substitution CdF2 for PbF2, the glass thermal stability increases and the UV cutoff edge moves to short-wave band slightly. With increasing CdF2 content, the blue and red upconversion luminescence intensity increases slightly at first, and then increases rapidly. While the near infrared (NIR) upconversion emission intensity increases notably at first and then increases slightly. However, the blue and NIR luminescence intensity are much stronger than that of red, indicating these oxyfluoride silicate glasses are more preferable for blue and NIR emissions than red emission. The possible upconversion mechanisms for the blue, red and NIR fluorescence are also estimated and evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties in ytterbium-sensitized erbrium-doped novel lead-free germanium bismuth-lanthanum glass have been studied. The structure of lead-free germanium-bismuth-lanthanum glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. This novel lead-free germanium-bismuth-lanthanum glass with low maximum phonon energy (similar to 751 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Published by Elsevier B.V.
Resumo:
Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) ->(3) H-6 and (1)G ->H-3(4), respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report on the effect of various alkaline-earth metal oxides on the broadband infrared luminescence covering 1000-1600 nm wavelength region from bismuth-doped silicate glasses. The full width at half maximum (FWHM) of the infrared luminescence and the fluorescent lifetime is more than 200 nm and 400 mu s, respectively. The fluorescent intensity decreases with increasing basicity of host glasses. Besides the broadband infrared luminescence, luminescence centered at 640 nm was also observed, which should be ascribed to Bi2+ rather than to the familiar Bi3+. We suggest that the infrared luminescence should be assigned to the X-2 (2)Pi (3/2) -> X-1 (2)Pi(1/2) transition of BiO molecules dispersed in the host glasses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.
Resumo:
Spectral properties of Yb3+/Ni2+ codoped transparent silicate glass ceramics containing LiGa5O8 nanocrystals were investigated. The near-infrared emission intensity of Ni2+ was largely increased with Yb3+ codoping due to Yb3+-> Ni2+ energy transfer. The qualitative calculation of the energy transfer constant Cs-a and rate Ps-a showed that the Yb3+-> Ni2+ energy transfer was much greater than in the opposite direction. Yb3+/Ni2+ codoped glass ceramics with 0.75 mol % Yb2O3 exhibited a near-infrared emission with full width at half maximum of 290 nm and fluorescent lifetime of 920 mu s. The glass ceramics are promising for broadband optical amplification.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 mu s. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. (C) 2007 Elsevier Ltd. All rights reserved.