160 resultados para Tibetan language


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of burrows constructed by plateau zokors Myospalax fontanierii (Milne-Edwards, 1867) on alpine meadow vegetation on the Qinghai-Xizang (Tibetan) plateau was investigated. Plant samples taken from quadrats directly over active zokor burrows, back-filled burrows, adjacent burrow controls, and random sites from a field, in which no burrows or mounds occurred were compared. The biomass of plants (below- and above-ground) directly over shallow active burrows was significantly lower than on control plots. This reduction in biomass was not significantly different than that between deep active burrows and control plots. There were no significant differences between above- and below-ground plant biomass on areas perpendicular to active burrows when compared to random sites. Back-filling soil in burrows could promote the growth of above-ground monocotyledonous plants. However, the burrowing activities of zokors had a negative effect on biomass of dicotyledonous plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise, the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha(-1), while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha(-1), was approximately twice that of the LG site. Soil respiration measurements - showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q(10) value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m(-2) y(-1) to the atmosphere, which was about one third more than the 1530g CO2 m(-2) y(-1) released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem. (C) 2003 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of grazing intensity on leaf photosynthetic rate (Pn), specific leaf area (SLA), individual tiller density, sward leaf area index (LAI), harvested herbage DM, and species composition in grass mixtures (Clinelymus nutans + Bromus inermis, Elymus nutans + Bromus inermis + Agropyron cristatum and Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum) were studied in the alpine region of the Tibetan Plateau. Four grazing intensities (GI), expressed as feed utilisation rates (UR) by Tibetan lambs were imposed as follows: (1) no grazing; (2) 30% UR as light grazing; (3) 50% UR as medium grazing; and (4) 70% UR as high grazing. Leaf Pn rate and tiller density of grasses increased (P < 0.05), while sward LAI and harvested herbage DM declined (P < 0.05) with the increments of GI, although no effect of GI on SLA was observed. With increasing GI, Elymus nutans and Clinelymus nutans increased but Bromus inermis and Agropyron cristatum decreased in swards, LAI and DM contribution. Whether being grazed or not, Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum was the most productive sward among the grass mixtures. Thus, two well-performed grass species (Elymus nutans and Clinelymus nutans) and the most productive mixture of four species should be investigated further as the new feed resources in the alpine grazing system of the Tibetan Plateau. Light grazing intensity of 30% UR was recommended for these grass mixtures when swards, LAI, herbage DM harvested, and species compatibility were taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Plateau zokors, Myospalax fontanierii, are the only subterranean herbivores on the Tibetan plateau of China. Although the population biology of plateau zokors has been studied for many years, the interactions between zokors and plants, especially for the maintenance and structure of ecological communities, have been poorly recognized. In the past, plateau zokors have been traditionally viewed as pests, competitors with cattle, and agents of soil erosion, thus eradication programmes have been carried out by local governments and farmers. Zokors are also widely and heavily exploited for their use in traditional Chinese medicine.2. Like other fossorial animals, such as pocket gophers Geomys spp. and prairie dogs Cynomys spp. in similar ecosystems, zokors may act to increase local environmental heterogeneity at the landscape level, aid in the formation, aeration and mixing of soil, and enhance infiltration of water into the soil thus curtailing erosion. The changes that zokors cause in the physical environment, vegetation and soil clearly affect the herbivore food web. Equally, plateau zokors also provide a significant food source for many avian and mammalian predators on the plateau. Zokor control leading to depletion of prey and secondary poisoning may therefore present problems for populations of numerous other animals.3. We highlight the important role plateau zokors play in the Tibetan plateau ecosystem. Plateau zokors should be managed in concert with other comprehensive rangeland treatments to ensure the ecological equilibrium and preservation of native biodiversity, as well as the long-term sustainable use of pastureland by domestic livestock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new iridoid glycosides designated as senburiside III (2) and senburiside IV (3), together with one known iridoid glycoside senburiside I (1) and three known secoiridoid glucosides swertiamarin (4), gentiopicroside (5) and sweroside (6), were isolated from the whole plant of Swertia franchetiana. The structures of the two new compounds were elucidated by spectroscopic methods.