190 resultados para Tert-butyl hydroperoxide
Resumo:
We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.
Resumo:
New neutral nickel(II) complexes bearing nonsymmetric bidentate pyrrole-imine chelate ligands (4a-d), [2-(ArNCH)C4H3N]Ni(PPh3)Ph [Ar=2,6-diisopropylphenyl (a), 2-methyl-6-isopropylphenyl (b), 2,6-diethylphenyl (c), 2-tert-butylphenyl (d)], have been prepared in good yields from the sodium salts of the corresponding ligands and trans-Ni(PPh3)(2)(Ph)Cl, and the structure of complex 4a has been confirmed by X-ray crystallographic analysis. These neutral Ni(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce great mass polymers. Catalyst activity of up to 4.2 x 10(7) g (mol Ni h)(-1) and the viscosity-average molecular weight of polymer of up to 9.2 x 10(5) g mol(-1) were observed. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of reaction parameters such as Al-Ni ratio, norbornene-catalyst ratio, monomer concentration, polymerization reaction temperature and time.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
Photoluminescence and electroluminescence from a new conjugated dendrimer consisting of three distyrylbenzene units linked by a central nitrogen atom as core and meta-linked biphenyl units as dendrons were investigated. Bright electroluminescence was realized by using bilayer devices with blurred interface, which were fabricated by sequentially spin-coating a neat dendrimer and a dendrimer doped with 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD). By optimizing the concentration of PBD, the maximum brightness and EL quantum efficiency reach 4100 cd/m(2) and 0.10%, respectively.
Resumo:
The present paper reports a study of the extraction of HNO3 with Cyancx923 (C923)-n-heptane. A third phase appears at different aqueous HNO3 concentrations for various initial C923 concentrations. Data analysis indicates that almost all of HNO3 and H2O are extracted into the middle phase. More HNO3 and water at a fixed ratio are solubilized in the reverse micelles or microemulsion in the third phase, which leads to a sharp increase of their concentration. The effect of temperature on the phase behavior of the three-phase system has also been investigated.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.
Resumo:
In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.
Resumo:
A nanoparticulate ferric oxide-copper tris(2,4-di-tert-amylphenoxy)-8-quinolinolylphthalocyanine hybrid ultrathin film was constructed from alternate layers by the Langmuir-Blodgett technique. The composition, morphology and structure of the film were studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, atomic force microscopy, small-angle X-ray diffraction, visible spectroscopy and polarized UV-Vis spectroscopy. All the above analyses suggest that the thin film is a kind of one-dimensional superlattice, composed of organic and inorganic components. The XPS data reveal that the nanoparticulate ferric oxide exists as an alpha-Fe2O3 phase in the films. Gas-sensing measurements show that the hybrid LB film has very fast response-recovery characteristics towards 2 ppm C2H5OH vapor.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
By screening the phage-displayed human single chain antibody library, we have got the specific single chain antibody bound to GSH-S-DNP butyl ester as the hapten. The tertiary structure of the protein was analyzed with the aid of computer, and the results showed the CDR3 region located on the surface of the antibody. The soluble antibody was expressed in E. coli. and the active site serine was converted into selenocysteine with the chemical modifying method, which resulted in the catalytic antibody with GPx activity of 80 U/mu mol. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody was studied.
Resumo:
Electroluminescent devices using a ternary europium complex Eu(DBM)(3)(hhpy)(2) (dibenzoylmethane, DBM; hexahydro pyridine, hhpy) as an emitting layer, poly(vinyl-carbazole) (PVK) as a hole-transporting material and tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an electron-transporting material have been fabricated. When only using Eu(DBM)(3)(hhpy)(2) as the emitting layer, luminance of 2.52 cd/m(2) with pure Eu3+ EL emissions from devices is achieved. Introducing a hole transporting material PVK and an electron transporting material 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxidiazole (PBD) in the emitting layer, luminance of 100cd/m(2) is achieved, and the eletroluminescence efficiency is enhanced by about two orders of magnitude. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Transition of crystalline structure and morphology of metallocene-catalyzed butyl branched polyethylene with branch content has been studied. It was found that the long periods of the branched polyethylene were controlled by crystallization conditions for the lower branch content samples and by branch contents for the higher branch content samples. When the branch content increased to a critical value the branched polyethylene had no long period because the crystalline morphology was changed from folded chain crystal to a bundled crystal. The TEM observations supported the results. The transition of the crystalline morphology resulted from the reduction of lamellar thickness with increasing of branch content since the branches were rejected from the lattice. The reduction of lamellar thickness with increasing of branch content also resulted in lattice expansion and decrease of melt temperature of the branched polyethylene. (C) 2001 Kluwer Academic Publishers.
Resumo:
By comparing the phosphorescence spectra of Gd(acac)(3) (acac=acetylacetone), Gd(TFacac)3 (TFacac=1,1,1-trifluoroacetylacetone), the effects of fluorine replacement of hydrogen on the triplet state energy of the ligands were revealed. Fluorine can lower the triplet state energy of Hacac and make it more suitable for energy transfer towards the D-5(4) state of terbium. Organic electroluminescent devices (OELDs) with the corresponding trivalent terbium complexes as emissive layers were fabricated. Triple-layer-type devices with a structure of glass substrate/ITO (indium tin oxide)/PVK [poly(N-vinylcarbazole)]/PVK : Tb complex: PBD [2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]/PBD/Al exhibit bright green luminescence upon applying a dc voltage. The luminance of a device with Tb(TFacac)(3)phen (1,10-phenanthroline) and Tb( TFacac) 3 as emissive layer is higher than that of the corresponding devices with Tb(acac)(3)(phen) and Tb(acac)(3) as emissive layers. The EL device with Tb(TFacac)(3)(phen) as emitter exhibits characteristic emission of Tb3+ ions with a maximum luminance of 58 cd m(-2) at 25 V.
Resumo:
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/mu mol and 28.8U/mu mol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.