252 resultados para TL
Resumo:
The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.
Resumo:
A series of cardo polyaryletherketones and polyaryletersulfones containing alkyl substituents of a different kind, number and volume were synthesized from bis(4-nitrophenyl)ketone or bis(4-fluorophenyl)sulfone with various alkyl substituted phenolphthaleins by polycondensation using K2CO3 as catalyst. Their chemical and aggregation structures were confirmed by FT-IR, H-1-NMR and WAXD. The resulting polymers were soluble in a variety of common polar solvents and, transparent, colorless, and tough films could be easily cast from 1,1,2-trichluoroethane solution. Their tensile strength, elongation at break and tensile modulis were in the range of 70.5 similar to 97.1MPa, 4.49%similar to7.81%, and 1.69 similar to2.27GPa, respectively. The prepared polymers had reasonably high glass transition temperatures at 207 to 269 degreesC, and showed fairly good thermal stability with 5% thermal decomposition loss above 410 degreesC.
Resumo:
Phenolphthalein based polyarylate macrocyclic oligomers were selectively synthesized by an interfacial polycondensation reaction of o-phthaloyl dichloride with phenolphthalein. The high selectivity benefits from the role of phenolphthalein as a color indicator, an efficient phase transfer catalyst, acid a preferred conformation of the starting materials as indicated by analyzing a single-crystal X-ray structure of an analogous macrocycle. The melt ROP of phenolphthalein polyarylate cyclic dimer was studied using nucleophilic initiators, The molecular weight of the resulting polymers builds up very rapidly at the very early stage of polymerization but decreases with time. During the ROP of cyclic dimer, analogous macrocycles with higher degree of polymerization (n greater than or equal to 3) and linear oligomers were produced by backbiting reaction especially at later stage of polymerization. Conversion of cyclic dimer is very fast at the earlier stage of polymerization and then increases slowly with time as analyzed by gel permeation chromatography. However, the total amount of cyclic oligomers in the ROP system increases with time at the later stage of polymerization because of the formation of larger macrocycles. The resulting polymers are amorphous. Glass transition temperatures (T(g)s) of these polymers are influenced by the polymerization time, type of initiator, and initiator concentration.
Resumo:
The sensitized fluorescence intensity of terbium ion can be notably enhanced when the Tb3+-fleroxacin complex is exposed to 365 nm light. By the measurements of fluorescence spectra, phosphorescence spectra, fluorescence quantum yield and fluorescence lifetime of the system, it is proved that irradiation makes the complex undergo a photochemical reaction and produces a new terbium complex which is more favorable to intramolecular energy transfer. The mechanism of the photochemical fluorescence enhancement was discussed.
Resumo:
Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.
Resumo:
Cyclic oligomers containing hexafluoroiso-propylidene(HFIP) units were prepared in excellent yields by a nucleophilic aromatic substitution reaction of 4,4(7)- (hexafluoroisopropylidene) diphenol with difluoro-monomers in the presence of anhydrous potassium carbonate under pseudo high dilution conditions. A combination of GPC, MALDI-TOF MS and NMR analysis confirmed the structure of the cyclic oligomers. All macrocyclic oligomers are crystalline and undergo facile melt polymerization to give high molecular weight fluorinated polyethers.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Two kinds of novel macrocyclic aryl thioether ether oligomers were synthesized by nucleophilic condensation reaction in high yields under pseudo-high-dilution condition. A combination of H-1 NMR, GPC and MALDI-TOF MS analyses unambiguously confirmed the cyclic nature and their distributions, Macrocyclic thioether ether ketone oligomers can undergo facile melt ring opening polymerization(ROP) initiated by thiyl radical to give a high molecular weight polymer.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MAIDI-TOF-MS) was used for analysis of poly(arylene phosphonate) cyclic oligomers. A comparison was made by using 1,8,9-dithranol, 2,5-dihydroxybenzoic acid and retinoic acid as the matrix. The result showed that the retinoic acid produced the strongest ion signals under the conditions used. Different salts of metals were used as the cationization agents to examine the effect on the cyclic oligomers. It was found that the salts could produce metal-cyclic oligomer cation spectra and lithium was the stronger one than those of silver so, the suitable matrix and cationization agent for the new cyclic oligmer were obtained. They were very effective for the analysis of poly(arylene phosphonate) cyclic oligomer.
Resumo:
Novel water insoluble sodium sulfonate-functionalized poly(ether ether ketone)s containing cyclohexylidene in the main chain with degree of sulfonation up to 2.0 were synthesized from nucleophilic polycondensation of 5, 5'-carbonylbis (2-fluorobenzenesulfonate), 4, 4'-difluorobenzophenone and 4, 4'-cyclohexylidenebisphenol. The polymers showed excellent thermal stability and good water resistance as well. The DSC diagrams and WAXD patterns indicated an amorphous morphological structure of these polymers. A comprison of some properties between these copolymers and polymers derived from bisphenol A was given.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.
Resumo:
A series of novel polyarylethersulfone (AB)(n) block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide-terminated and fluorine-terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, C-13 NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 C) and high glass transition temperatures, and have a wide melt-processing temperature range. They may become a new class of mouldable high performance thermoplastics. (C) 2001 Society of Chemical Industry.
Resumo:
Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol with degree of sulfonation up to 2.0 were synthesized by nucleophilic polycondensation of various amount of 5,5 '-carbonylbis(2-fluorobenzenesulfonate) (1) and 4,4'-difluorobenzophenone (2) with 4,4'-thiodipheno (3). Component and structure of the polymers were confirmed by TR, NMR and elemental analysis. Wide angle X-ray diffraction patterns indicated an amorphous structure of the polymers. All the polymers showed excellent thermal stability and poor solubility in water. (C) 2001 Elsevier Science Ltd. All rights reserved.