153 resultados para Subtropical grasslands
Resumo:
Planktonic microbial community structure and classical food web were investigated in the large shallow eutrophic Lake Taihu (2338 km(2), mean depth 1.9 m) located in subtropical Southeast China. The water column of the lake was sampled biweekly at two sites located 22 km apart over a period of twelve month. Site 1 is under the regime of heavy eutrophication while Site 2 is governed by wind-driven sediment resuspension. Within-lake comparison indicates that phosphorus enrichment resulted in increased abundance of microbial components. However, the coupling between total phosphorus and abundance of microbial components was different between the two sites. Much stronger coupling was observed at Site 1 than at Site 2. The weak coupling at Site 2 was mainly caused by strong sediment resuspension, which limited growth of phytoplankton and, consequently, growth of bacterioplankton and other microbial components. High percentages of attached bacteria, which were strongly correlated with the biomass of phytoplankton, especially Microcystis spp., were found at Site 1 during summer and early autumn, but no such correlation was observed at Site 2. This potentially leads to differences in carbon flow through microbial food web at different locations. Overall, significant heterogeneity of microbial food web structure between the two sites was observed. Site-specific differences in nutrient enrichment (i.e. nitrogen and phosphorus) and sediment resuspension were identified as driving forces of the observed intra-habitat differences in food web structure.
Resumo:
Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r~2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r~2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r~2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r~2 = 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r~2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.