167 resultados para Structural modeling of digital informational environments
Resumo:
Competition dialysis was used to study the interactions of 13 substituted aromatic diamidine compounds with 13 nucleic acid structures and sequences. The results show a striking selectivity of these compounds for the triplex structure poly dA:(poly dT)(2), a novel aspect of their interaction with nucleic acids not previously described. The triplex selectivity of selected compounds was confirmed by thermal denaturation studies. Triplex selectivity was found to be modulated by the location of amidine substiuents on the core phenyl-furan-phenyl ring scaffold. Molecular models were constructed to rationalize the triplex selectivity of DB359, the most selective compound in the series. Its triplex selectivity was found to arise from optimal ring stacking on base triplets, along with proper positioning of its amidine substituents to occupy the minor and the major-minor grooves of the triplex. New insights into the molecular recognition of nucleic acid structures emerged from these studies, adding to the list of available design principles for selectively targeting DNA and RNA.
Resumo:
The 24-mer DNA aptamer of Harada and Frankel ( Harada, K.; Frankel, A. D. EMBO J. 1995, 14, 5798-5811) that binds L-argininamide (L-Arm) was studied by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). This DNA folds into a stem and loop such that the loop is able to engulf L-Arm. As controls, two derivatives of the same base composition, one with the same stem but a scrambled loop and the other with no ability to form a secondary structure, were studied. The two DNAs that could fold into stem-loop structures showed a more negatively charged distribution of ions than the linear control. This tendency was preserved in the presence of ligand; complexes expected to have more secondary structure had ions with more negative charges. Distinct species corresponding to no, one, and two bound L-Arm molecules were observed for each DNA. The fractional peak intensities were fit to a straightforward binding model and binding constants were obtained. Thus, ESI-FTMS can provide both qualitative and quantitative data regarding the structure of DNA and its interactions with noncovalent ligands.
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
A new compound, (CH5N2)(3)(PMo12O40CH4N23H2O)-C-.-H-. (1), was synthesized and structurally characterized by elemental analyses, IR spectra, UV spectra, NMR spectra and ESR spectra. This is, to our knowledge, the first example of an imidazole-polyoxometalate species. The compound was recrystallized from N,N-dimethylformamide (DMF), and then black block-like crystals of (C3H5N2)(4)((PMoMo11O40)-Mo-V-O-VI)(.)4C(3)H(7)NO(.) 2H(2)O (2), were obtained. It crystallizes in a triclinic space group P (1) over bar with n=12.423(3) Angstrom, b=12.666(3) Angstrom, c=13.341(3) Angstrom, alpha=70.56(3)degrees, beta=71.16(3)degrees, gamma=64.18(3)degrees, V= 1742.3(6) Angstrom(3), Z=1, R1 = 0.0585, wR2 = 0.1885. An X-ray crystallographic study showed that the crystal structure is constructed by electrostatic attractions and hydrogen bonds between a dodecamolybdophosphoric anion and an imidazole. The imidazole and DMF molecules occupy cavities in a polyoxometalate lattice ordered along a c-axis. The structure of (2) is similar to that of (1) from a comparison of both IR spectra and TGA Curves.
Resumo:
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when e is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.
Resumo:
Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.
Resumo:
A new compound [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2(1)/n with a=1.438 5(3) nm, b=1.012 2(2) nm, c=1.832 5(4) nm, beta=90.21degrees, V=2.668 2 (9) nm(3), Z = 2, D-c = 2.112 g/cm(3), R = 0.055, wR = 0.149 7, S = 1.037. The structure of [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] is characterized by P-V-O layers constructed by [(VO)4 (OH)(2)(PO4)(4)](6-) non-symmetric units. The P-V-O layers are pillared by [Co(H2O)(2)](2+) group, resulting in the channels within which the protonated diaminoethane and H3O+ are located.
Resumo:
The first heteropoly acid-dipeptide complex, (HGly-Gly)(3)PMo12O40.4H(2)O, was synthesized and characterized by elemental analysis, IR, UV, H-1 NMR and single crystal X-ray diffraction. The X-ray crystallographic study showed that the crystal structure was constructed from N-H...O and O-H...O hydrogen bonds among the (HGly-Gly)(+), H2O and PMo12O403- units. This structure represents a model interaction between polyoxometalates and proteins. The complex has photosensitivity under irradiation by sunlight. The fluorescent activity of this compound is also reported.
Resumo:
A novel organic-inorganic hybrid compound {[Cu (2, 2'-bpy)(2)](2)Mo8O26} has been hydrothermally Synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group, Pna2(1), with a=2.4164 (5), b=1.8281 (4), c=1.1877 (2) nm, V=5.247(2) nm(3), Z=4, and final R-1=0.0331, wR(2)=0.0727. The structure consists of discrete {[Cu(2,2'-bpy)(2)](2)Mo8O26} clusters, constructed from a beta -octamolybdate subunit[Mo8O26](4-) covalently bonded to two [Cu(2,2'-bpy)(2)](2+) coordination complex cations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.
Resumo:
Single crystals of PrMnO3 and TbMnO3 were grown by floating zone method and the crystal structure was determined by single crystal X-ray diffractometry. The structure of these compounds belongs to the orthorhombic system (space group is Pnma, No. 62) with the lattice parameters alpha approximate to root (.) - a(p), b approximate to 2 (.) a(p) , c approximate to root 2.a(p) and Z = 4, where a(p) is ideal cubic perovskite cell parameter.
Resumo:
A novel dimer-tungstovanadate, (H3O)(4)[VW12O40Na (H2O)(4)](2), was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectra, TGA-DSC thermal analysis and polarograpy. The yellowish crystal crystallized in the triclinic system, space group P1, a = 1.464 5(3) nm, b = 1.468 6(3) nm, c = 1.411 1(3) nm, alpha = 111.82(2)degrees, beta = 93.17(3)degrees, gamma = 117.47(3)degrees, V = 2.210 6(8) nm(3), Z = 1, D-c = 4.552 g . cm(-3), lambda (Mo K alpha) = 0.071 073 nm, mu = 31.402 mm(-1) F(000) = 2 6481 R = 0.078 0. The title compound consists of two Keggin structure units linked together with two hydrated sodium cations to form a dimer with a porous structure with the pore dimension of 0.766 nm X 0.778 5 nm.
Resumo:
The reaction of NdCl3 with 2 equiv. of Na-(BuC5H4)-C-t in THF(tetrahydrofuran) gives blue crystals [((BUC5H4)-C-t)(2)NdCl](2), C36H52Cl2Nd2(M-r = 844.11) Which crystallizes in the triclinic system with space group
. The crystal data are a=11.978 (1), b=12.671(4), c=12.706(2)Angstrom, alpha=105.47(2), beta=99.38(1)? gamma=93.15 (2)degrees, V=1825 (3) Angstrom(3), Z = 2 , D-c = 1.53g/cm(3), F(000) = 450 , T = 298K , lambda(MoK alpha) = 0.71069 Angstrom, , mu = 14.97cm(-1). Final R = 0.0390, R-w = 0.0376 for 4329 reflections with I greater than or equal to 3 sigma(I-o). The molecule has a dimer structure with two certrosymmetrical chlorine bridges. The structural trend of these analogous complexes is discussed.