177 resultados para Stereogenic quaternary center
Resumo:
[(C6H5CH2C5H4)(2)GdCl . THF](2) (1) and (C6H5CH2C5H4)(2)ErCl . THF (2) were prepared by the reaction of LnCl(3) (Ln=Gd, Er) with benzylcyclopentadienyl sodium in THF and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, MS and thermal gravimetry. The crystal structures of both compounds were determined. Complex 1 is dimeric and its structure belongs to the monoclinic, P2(1)/c space group with a=1.1432(2), b=1.2978(2), c=1.7604(3) nm, beta=108.75(2), V=2.4732(9) nm(3), Z=2(four monomers), D-c=1.54 g . cm(-3). R=0.0342 and R(w)=0.0362. Complex 2 is monomer and its structure belongs to the orthorhombic, P2(1)2(1)2(1) space group with a=0.8645(2), b=1.1394(3), c=2.5289(4) nm, V=2.4919(9) nm(3), Z=4, D-c=1.56 g . cm(-3). R=0.0514, R(w)=0.0529. The determination of the crystal structure shows that in complex 1 the benzyl groups on the cyclopentadienyls coordinated to Gd3+ are located in the opposite direction (139 degrees); in complex 2 the benzyl groups on the cyclopentadienyls coordinated to Er3+ are located in the same direction (6.5 degrees).
Resumo:
LnCl(3) reacted with C6H5CH2C5H4Na in THF (tetrahydrofuran) in the ratio 1.1 at room temperature for 1 h giving C(6)H(5)CH(2)C(6)H(4)LnCl(2) . nTHF, which reacted with C8H8K2/THF and the crystals obtained were recrystallized in DME to yield the title complex. The crystal structure of (C8H8) Ln (C6H5CH2C5H4). DME was determined revealing that the Gd complex has one conformation. One benzylcyclopentadienyl (eta(5)), one cyclooctatetraenyl (eta(8)) and the two oxygen atoms of DME (dimethoxyethane) are coordinated to Gd with the effective coordination number of 10.
Resumo:
LaCl3(15-crown-5), I was prepared by the reaction of LaCl(3)nH(2)O with 15-crown-5 and bipy (2,2'-bipyridyl). [LaCl2(phen)(H2O)(2)(mu-Cl)](2) .(15-crown-5). MeCN, II, was crystallized from a mixture of LaC1(3) . nH(2)O, phen (1,10-phenanthroline) and 15-crown-5 in MeOH/MeCN, Crystal structures of these two complexes have been determined by X-ray methods. The La(III) ion in I is coordinated by three Cl anions and five oxygen atoms of a crown ether. The two metal ions in II are bridged by two Cl anions and the crown ligand is hydrogen-bonded to the coordinated water molecules to form polymeric... crown/cation/cation/crown... chains.
Resumo:
Three new bimetallic complexes were synthesized and crystalized by reactions of (CF3CO2)(3)Ln With R(1) AlR(2)(Ln=Nd and Y, R(1)=H, R=i-C4H9; Ln=Eu, R=R(1)=C2H5) in tetrahydrofuran solution, and their crystal structures were determined using a X-ray diffraction method. The structures and the questions on valence state and noncoplanarity in the structures were confirmed and cracked by means of H-1 NMR and C-13 NMR spectra, especially by C-13-H-1 COSY 2D NMR technique. A general formula of molecules of the three rare earth complexes was defined as follows: [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AlR(2) . 2THF](2) A mechanism on the formation of the new complexes was also proposed through the following five steps: alkylating, beta-elimination (or hydrogenation), hydrogen transfer, linkage and association. Both Y-Al and Eu-Al complexes function as a catalyst in polymerization of MMA and ECH. The polymer obtained from the first monomer is mainly syndiotactic chain structure and the polymerization of the last monomer shows higher catalytic activity. The Y-Al complex also capable of ring-opening polymerization of THF in case of adding-vary small amount of ECH and a oxonium ion mechanism of THF polymerization was suggested from the analysis of THF polymer terminal.
Resumo:
The differences between the solvent extraction of Tb(III) and Tb(IV) periodate complexes with quaternary amine were studied carefully for the first time. The effects of extractant concentration, phase ratio, the pH value of stock solution, salting-out agent, extractant form, diluent, and extraction time were comprehensively investigated. Under optimal conditions the separation factor between Tb(IV) and Tb(III) periodate complexes is over 5.5.
Resumo:
The binuclear complex [Ni(oxae)Ni(phen)2](ClO4)(2) . H2O (oxae=N,N'bis(2-aminoethyl) oxamido dianion, phen = 1, 10-phenanthroline) was prepared from the planar monomeric complex Ni(oxae) and characterized through analytical and spectroscopic measurements. The structure of [Ni(oxae)Ni(phen)(2)] (ClO4)2 . 3H(2)O was investigated by single-crystal X-ray analysis. The complex has an extended oxamido-bridged structure and consists of two nickel(II) ions, one of them in a square planar environment and another in a distorted octahedral environment. The Ni-Ni distance is 5.267 Angstrom.
Resumo:
[La(OH2)(5)(phen)(2)]Cl-3 4H(2)O.phen is centric, Pnna, with a = 19.946(7), b = 16.458(5), c = 12.207(4)Angstrom and D-calc = 1.57 g cm(-3) for Z = 4. The La(III) ion resides on a crystallographic twofold axis and is coordinated to four nitrogen atoms (fr
Resumo:
A lanthanum coordination compound with glycine {[La(Gly)3.2H2O].(ClO4)3}n (Gly = NH+ 3-CH2-COO-) was synthesized and obtained in the form of single crystals. Its X-ray crystal structure has been determined and the IR spectrum has been studied. Crystallo
Resumo:
Me4C2(C5H4MgCl)2(THF) (THF = tetrahydrofuran) reacts with anhydrous SmCl3 in THF to give [Me4C2CP2SMCl.THF]2. The molecule is a dimer. Sm1 and Sm2 are bridged unsymmetrically by two chlorine atoms [Sm(1)-CI(1) 2.787(2), Sm(1)-Cl(2) 2.848(2), Sm(2)-Cl(1) 2
Resumo:
Two lanthanum(III) [2,2,2]cryptates, [LaCl[2,2,2](H2O)]Cl-2.H2O (1) and [La(CF3SO3)[2,2,2](DMF)] (CF3SO3)(2) (2) have been prepared by the reaction of LaCl3 and La(CF3SO3)(3) with [2,2,2]cryptand, respectively and their crystal structures have been determ
Resumo:
The title complex was prepared by reacting Yb(NO3)3 (12-crown-4) with 1, 10-phenanthiroline (hereafter phen) in acetone. It crystallized in the triclinic space group P1BAR with a = 10.095(5), b = 17.415(4), c = 8.710(2) angstrom; alpha = 92.45(2), beta = 115.83(3), gamma = 74.08(3)degrees and D(c), = 1.85 g cm-3; Z = 2. The metal ion in this complex is nine-coordinated to three bidentate nitrate ions, two nitrogen atoms of a phen and a water molecule. The crown ligand is hydrogen bonded to the coordination water molecule. The symmetry change of the crown ether is also discussed.
Resumo:
On the basis of accelerator mass spectrometer radiocarbon (AMS C-14) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39 cm/ka, and the average is 23.0 cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MI5) 2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.