383 resultados para Soil inoculation
Resumo:
本实验表明:外生菌根真菌彩色豆马勃、劣味乳菇、丝膜菌对PH的适应范围较广,最适生长BH呈酸性。模拟酸雨对马尾松幼苗菌根的外部形态和内部结构有明显影响。在温室栽培中,模拟酸雨(PH2.0)显著抑制菌根侵染率,在田间实验中,对菌根侵染率有一定的影响。菌根PH和土壤PH值随模拟酸雨PH下降而逐渐降低,接种菌根菌可略提高菌根PH和土壤PH值。菌根真菌过氧化氢酶对培养基中PH的变化不敏感,模拟酸雨对菌根过氧化氢酶活性影响也不明显。但沙培中,模拟酸雨(PH2.0)显著抑制菌根过氧化氢酶活性。模拟酸雨(PH2.0)显著刺激菌根过氧化物酶活性,接种菌根菌可以降低菌根过氧化物酶活性。不同PH的培养基对菌体硝酸还原酶活性有明显影响,而且菌体生长速度与硝酸还原酶活性呈正相关。模拟酸雨(PH2.0)显著抑制菌根硝酸还原酶活性,而接种菌根菌明显提高根系硝酸还原酶活性。菌体酸性磷酸酶活性对培养基中PH变化不敏感,同样菌根酸性磷酸酶活性对模拟酸雨的影响也不明显,但是接种菌根菌可明显提高根系酸性磷酸酶活性。模拟酸雨对马尾松幼苗茎的高生长影响不显著。但是对幼苗茎、根系的干重和侧根总长度有显著抑制作用。轻度酸雨(PH4.5-3.0)对马尾松幼苗生长有促进作用,接种菌可提高幼苗生长。从菌根形态结构和生理活性上看,接种菌根菌可减轻模拟酸雨对马尾松幼苗根系的危害,增强对模拟酸雨的抗性。4dThe result of experiment showed that ectomycorrhizal fungi Pisolithus tinctorins. Lactarius insulsus. Cortinarius russus can be growth in broad PH rang in pure culture, the optimum growth PH is acidity. The external morphology and internal structure of ectomycorrhiza of P. massoniana are affected with simulated acid rain. In greenhouse, simulated acid rain (PH2.0) treatment caused significant decrease in the percent infection, but it's not marked in field. The PH of mycorrhizal and soil are reduced with reducing rainfall PH. These PH are slight higher for inoculation with ectomycorrhizal fungi. Catalase activity of ectomycorrhizal fungus is not sensitive to medium with different PH. Mycorrhiza catalase activiyt is not affected significantly with simulated acid rain, but it's inhibited significantly with simulated acid rain (PH2.0) in the sand culture. Peroxidase atcivity of mycorrhiza is enhanced significantly with simulated acid rain (PH2.0), but it's universally lower for inoculation with ectomycorrhizal fungus. Ectomycorrhizal fungus nitrate reductase activity is affected significantly to medium with differdnt PH, the rates of these fungi growth and nitrate reductase activity is significant correlation. Nitrate reductase activity of mycorrhiza is inhibited significantly with simulated acid rain (PH 2.0), but it's increased significantly for inocnlation with mycorrhizal fungi. Ectomycorrhizal fungas acid phosphatase activity is not affected to medium with different PH, Mycorrhiza acid phosphatase activity is not affected with simulated acid rain too, the acid phosphatase activity of roots inoculated with mycorrhizal fungas is increased significantly. The highest acidity level simulated rain reduced signhficantly root system biomass and the dry weight of stem. Iower acidity level simulated rain can stimulated the growth of P. massoniana, the growth of seedling inocnlated with mycorrhizal fungus can be increased.