155 resultados para SMA wire actuator
Resumo:
A three-dimensional analytical solution of the microheater temperature based on heat diffusion equation is developed and compared with experimental results. Dimensionless parameters are introduced to analyze the temperature rise time and the distribution under steady state. To study the microheater temperatures before bubble nucleation, a set of working fluids and microheaters are considered. It is shown that the dimensionless time xi(-)(0) required for the temperature rise from room to 95% of the steady state temperature is about 75, not dependent on working fluids and microheaters. Heat transfer to the surrounding liquid is mainly caused by conduction, not by convection and radiation mechanisms. The microheater length affects the surface temperature uniformity, while its width influences the steady temperatures significantly, yielding the transition from heterogeneous to homogeneous nucleation mechanism from square microheaters to narrow line microheaters.
Resumo:
We investigate the interband optical absorption spectra near the band edge of a cylindrical semiconductor quantum wire in the presence of a static electric field and a terahertz electric field polarized along the axis. Optical absorption spectra are nonperturbatively calculated by solving the low-density semiconductor Bloch equations in real space and real time. The influence of the Franz-Keldysh (FK) effect and dynamical FK effect on the absorption spectrum is investigated. To highlight the physics behind the FK effect and dynamical FK effect, the spatiotemporal dynamics of the polarization wave packet are also presented. Under a reasonable static electric field, substantial and tunable absorption oscillations appear above the band gap. A terahertz field, however, will cause the Autler-Townes splitting of the main exciton peak and the emergence of multiphoton replicas. The presented results suggest that semiconductor quantum wires have potential applications in electro-optical devices.
Resumo:
We observed Sgr A* using the Very Large Array (VLA) and the Giant Metrewave Radio Telescope (GMRT) at multiple centimeter and millimeter wavelengths on 2003 June 17. The measured flux densities of Sgr A*, together with those obtained from the Submillimeter Array (SMA) and the Keck II 10 m telescope on the same date, are used to construct a simultaneous spectrum of Sgr A* from 90 cm to 3.8 mu m. The simultaneous spectrum shows a spectral break at about 3.6 cm, a possible signature of synchrotron self-absorption of the strong radio outburst that occurred near epoch 2003 July 17. At 90 cm, the flux density of Sgr A* is 0.22 +/- 0.06 Jy, suggesting a sharp decrease in flux density at wavelengths longer than 47 cm. The spectrum at long cm wavelengths appears to be consistent with free-free absorption by a screen of ionized gas with a cutoff similar to 100 cm. This cutoff wavelength appears to be three times longer than that of similar to 30 cm suggested by Davies, Walsh, & Booth based on observations in 1974 and 1975. Our analysis suggests that the flux densities of Sgr A* at wavelengths longer than 30 cm could be attenuated and modulated by stellar winds from massive stars close to Sgr A*.
Resumo:
A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x
Resumo:
A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.