252 resultados para SEMICONDUCTOR-LASER
Resumo:
A photoconductive semiconductor switch (PCSS) would work in a nonlinear mode under high biased electrical field. The experimental results of nonlinear critical state have shown that both the biased voltage and the laser energy may have working thresholds to turn on the nonlinear modes. The relation between the biased voltage (aid the laser energy is inverse ratio, i.e., higher biased field need lower laser energy for nonlinear mode, and vise versa. At the nonlinear critical point, the output of PCSS is unstable, as both the linear and nonlinear pulse may occur. As the laser energy and biased field increase, the PCSS would work in the nonlinear mode steadily. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 56-59 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOT 10.1002/mop.24001
Resumo:
We present a broadly tunable active mode- locked. bre ring laser based on a semiconductor optical ampli. er ( SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12 ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength- tunable optical bandpass. lter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental con. guration of the pulse laser is very simple and easy to setup with no polarization- sensitive components.
Resumo:
A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.
Resumo:
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The turn-on delay time jitter of four different unbiased gain-switched laser types is determined by measuring the temporal probability distribution of the leading edge of the emitted optical pulse. One single-mode 1.5-mu-m distributed feed-back laser and three multimode Fabry-Perot lasers emitting at 750 nm and 1.3-mu-m are investigated. The jitter is found to decrease for all lasers with increasing injection current. For multimode lasers it decreases from 8 ps excited slightly above threshold down to below 2 ps at three times the threshold current. The jitter of the distributed feedback (DFB) laser is a factor of 3-5 larger than the jitter of the three multimode lasers. A new model to predict the turn-on delay time jitter is presented and explains the experiments quantitatively.
Resumo:
An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22μm-wide and 2mm-long epilayer-up bonded device.
Resumo:
Ultrashort pulses were generated in passively mode-locked Nd:YAG and Nd:GdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.
Resumo:
Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW
Resumo:
A passive mode-locked diode-pumped self-frequency-doubling Yb:YAB laser with a low modulation depth semiconductor saturable absorber mirror operating at 374 MHz is demonstrated. The measured pulse duration is 1.98 ps at the wavelength of 1044 nm. The maximum average power reaches 45 mW.
Resumo:
Stable continuous-wave passive mode-locking of diode-end-pumped Nd:GdVO4 and Nd:YAG lasers withsemiconductor saturable absorber mirrors (SESAMs) are reported. The comparative study shows that theNd:GdVO4 crystal is efficient to decrease the Q-switched mode-locking tendency, and easier to continuous-wave (CW) mode lock than Nd:YAG.
Resumo:
Stable mode-locking in a diode-pumped Yb:YAG laser was obtained with a very fast semiconductor saturable absorber mirror (SESAM). The pulse width was measured to be 4 ps at the central wavelength of 1047 nm. The average power was 200 mW and the repetition rate was 200 MHz.
Resumo:
A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.
Resumo:
We analyze the mode behaviors for semiconductor lasers with an equilateral triangle resonator by deriving the mode field distribution and the eigenvalue equation. The eigenvalue equation shows that the longitudinal mode wavelength interval is equivalent to that of a Fabry-Perot cavity with the cavity length of 1.5a, where a is the side length of the equilateral triangle resonator. The transverse waveguiding is equivalent to as a strip waveguide with the width of root 3a/ 2, and the number of transverse modes supported by the resonator is limited by the total reflection condition on the sides of the equilateral triangle. Semiconductor microcavity laser with an equilateral triangle resonator is suitable to realize single mode operation, and the mode wavelength can be adjusted by changing the side length.
Resumo:
High performance uncooled 1.55 mu m InGaAsP/InP strained layer quantum well (SL-QW) lasers grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were reported in this paper. Whole MOCVD over growth method were applied in this work. The threshold currents of 5mA and the highest lasing temperature of 122 degrees C were obtained.
Resumo:
1.3 mu m strained-layer multi-quantum wells complex-coupled distributed feedback lasers with a wide temperature range of 20 to 100 degrees C are reported. The low threshold current of 10mA and high single-facet slope efficiency of 0.3mW/mA were obtained for an as cleaved device. The single mode yield was as high as 80%.