293 resultados para Raggi x, laser, plasma, femtosecondo.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic nanostructures are observed on the surface of ZnSe after irradiation by a focused beam of a femtosecond Ti:sapphire laser, which are aligned perpendicular to the laser polarization direction. The period of self-organized grating structures is about 160 nm. The phenomenon is interpreted in terms of interference between the incident light field and the surface scattered wave of 800-nm laser pulses. With the laser polarization parallel to the moving direction we produce long-range Bragg-like gratings by slowly moving the crystal under a fixed laser focus. The nanograting orientation is adjusted by laser polarization and the accumulation effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of the maximum and average energies of protons, which were produced in the interaction of an intense laser pulse (similar to 1 x 10(16) W cm(-2), 65 fs) with hydrogen clusters in a gas jet backed up to 80 bar at liquid nitrogen temperature (similar to 80 K), on the backing pressure has been studied. The general trend of the proton energy dependence on the square of the average cluster radius, which is determined by a calibrated Rayleigh scattering measurement, is similar to that described by theory under the single size approximation. Calculations are made to fit the experimental results under a simplified model by taking into account both a log-normal cluster size distribution and the laser intensity attenuation in the interaction volume. A very good agreement between the experimental proton energy spectra and the calculations is obtained in the high- energy part of the proton energy distributions, but a discrepancy of the fits is revealed in the low-energy part at higher backing pressures which are associated with denser flows. A possible mechanism which would be responsible for this discrepancy is discussed. Finally, from the fits, a variation of the cluster size distributions was revealed to be dependent on the gas backing pressure as well as on the evolving time of the gas flow of clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the distribution of generated microcrystallites in borate glass irradiated by 120 fs laser pulses at a central wavelength of 800 nm. Raman spectroscopy is used to investigate the distribution of the high and low temperature phases of barium metaborate crystals generated in the borate glass. In combination with a microexplosion model, bond-breaking induced by laser irradiation is served as the origin of the formation of BBO crystals. Depending on the laser fluence and cooling conditions, the distribution mechanisms have been discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the laser-induced periodic structure with different spatial characteristics on the surface of polished ZnO single-crystalline by high repetition rate femtosecond laser pulses. This study demonstrates that, using different laser parameters and irradiation conditions, ZnO nanoripples and nanorods were successfully prepared. We have investigated the surface by means of scanning electron microscope (SEM), Raman scattering and photoluminescence (PL). We propose that second-order harmonic has a strong influence on the formation of nanostructures. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiple-staged ion acceleration mechanism in the interaction of a circularly polarized laser pulse with a solid target is studied by one-dimensional particle-in-cell simulation. The ions are accelerated from rest to several MeV monoenergetically at the front surface of the target. After all the plasma ions are accelerated, the acceleration process is repeated on the resulting monoenergetic ions. Under suitable conditions multiple repetitions can be realized and a high-energy quasi-monoenergetic ion beam can be obtained.