384 resultados para Propylene Glycol
Resumo:
Oxidative dehydroaromatization of propylene was investigated by the pulse technique over two kinds of single oxide catalysts. With the Bi2O3 catalyst, the main dimer product was 1,5-hexadiene, and the dimerization activity was stable to pulse number even if the catalyst was partly reduced to the bulk. With the CeO2 catalyst, benzene was mainly formed instead of 1,5-hexadiene, but the activity decreased rapidly with increasing pulse number, indicating that only the lattice oxygen near the catalyst surface could be used for oxidative dimerization and the further aromatization. The Bi-Ce-O system catalyst was found in this study to give higher aromatization activity and showed better stability, compared to the Bi-Sn-O catalyst. Although the Bi-Ce-O catalyst was only a mixture of the two component oxides from X-ray diffraction analysis, there was a significant combination effect on the selectivity to benzene. The highest and the most stable selectivity of benzene was obtained at Bi/Ce = 1. In the TPD spectrum of Bi-Ce-O catalyst, there are not only the lattice oxygen (beta-oxygen) over 620-degrees-C due to the reduction of Bi2O3, but also a great deal of the alpha-oxygen desorbed about 400-degrees-C, which is considered the absorbed oxygen in the bulk. This absorbed oxygen could probably be a compensation of the lattice oxygen through the route of gaseous --> absorbed --> lattice oxygen in the binary catalyst system. By the kinetic study on the Bi-Ce-O catalyst, the dimer formation rate was the first-order with respect to the partial pressure of propylene and zero-order of oxygen. Although detail investigation would be made further, it was considered that the complete oxidation of propylene would mainly take place parallelly on some different sites, and the rate-determining step of propylene dimerization occurred probably between an adosrbed propylene and a gaseous one by an Eley-Rideal type mechanism.
Resumo:
To explore the reactivities of alkene (-CH=CH2) and carboxy (-COOH) group with H-Si under UV irradiation, the addition mechanism for the reactions of SiH3 radical with propylene and acetic acid was studied by using the B3LYP/6-311++ G(d,p) method. Based on the surface energy profiles, the dominant reaction pathways can be established; i.e., SiH3 adds to the terminal carbon atom of the alkene (-CH=CH2) to form an anti-Markovnikov addition product, or adds to the oxygen atom of the carboxy group (-COOH) to form silyl acetate (CH3-COOSiH3). Because the barrier in the reaction of the carboxy group (39.9 kJ/ mol) is much larger than that of alkene (11.97 kJ/mol), we conclude that the reaction of bifunctional molecules (e.g., omega-alkenoic acid) with H-Si under irradiation condition is highly selective; i.e., the alkene group (-CH= CH2) reacts with SiH3 substantially faster than the carboxyl group (-COOH), which agrees well with the experimental results. This provides the possibility of preparing carboxy-terminated monolayers on silicon surface from omega-alkenoic acids via direct photochemical reaction.
Resumo:
A new program to characterize polyethylene glycol-modified (PEGylated) proteins is outlined using capillary zone electrophoresis (CZE). PEGylated ribonuclease A and lysozyme were selected as examples. Five separation procedures were compared to select out the mixed buffer of acetonitrile-water (1:1, v/v) at pH 2.5 as the best to characterize the PEGylated proteins without sample pretreatment. Polyethylene oxide (PEO) with a high molecular mass of 8X10(6) was applied to rinse the capillary to form a dynamic coating which would decrease the undesirable proteins adsorbed to the inner wall of the silica. The electroosmotic flow (EOF) mobility of the five procedures was determined, respectively. It is found that acetonitrile is mainly responsible for the good resolution of PEGylated proteins with the help of PEO coating in the semi-aqueous system. The low EOF mobility and current in the semi-aqueous system might also have some responsibility for the high resolution. The semi-aqueous procedure described in this paper also demonstrates higher resolution of natural proteins than aqueous ones. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Titanium silicalite (TS-1) was successfully synthesized by using TPABr as the template and silica sol as silicon source in a 100 l stainless steel autoclave. IR, XRD, UV--vis, elemental analysis, and (2)7Al and (3)1P MAS NMR were used to characterize the synthesized products. The results show that the synthesized material has an MFI structure with high crystallinity and large crystal size and two kinds of titanium species. Trace aluminum in silica sol is also incorporated into the zeolite framework. The synthesized TS-1 exhibits high activity in the epoxidation of propylene with dilute H2O2 with high selectivity to methyl mono-ethers and low selectivity to propylene oxide (PO). The low selectivity toward PO is due to the residual acidity onto TS-1. The selectivity of PO can reach up to 90% through adjusting the pH of the reaction mixture. Extra amounts of base decrease the H2O2 utilization and the H2O2 conversion. However, in over acid-treated TS-1 in which part removal of extra-framework titanium takes place, the utilization of H2O2 is quite different: for the low Si/Ti ratio of TS-1, the H2O2 utilization increases. But the utilization of H2O2 does not change for the high Si/Ti ratio TS-1. Thermal analysis shows that the as-synthesized TS-1 exhibits high activity and thermal stability in the calcined range 540-900 degreesC.
Resumo:
Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.