200 resultados para POTASSIUM PENTABORATE
Resumo:
Cyclic oligomers containing hexafluoroiso-propylidene(HFIP) units were prepared in excellent yields by a nucleophilic aromatic substitution reaction of 4,4(7)- (hexafluoroisopropylidene) diphenol with difluoro-monomers in the presence of anhydrous potassium carbonate under pseudo high dilution conditions. A combination of GPC, MALDI-TOF MS and NMR analysis confirmed the structure of the cyclic oligomers. All macrocyclic oligomers are crystalline and undergo facile melt polymerization to give high molecular weight fluorinated polyethers.
Resumo:
Novel poly(aryl ether ketone)s containing a lateral methoxy group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and methoxyhydroquinone with 1,4-bis(4-fluorobenzoyl)benzene in a sulfolane solvent in the presence of anhydrous potassium carbonate. Their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques, e.g. differential scanning calorimetry (DSC), polarized light microscopy and temperature-dependent FTIR. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 30-80 mol-% mexthoxyhydroquinone. Both melting (T-m) and isotropization (T-i) transitions appeared in the DSC curves. The polarized light microscopy study of the liquid crystalline copolymers suggested their ordered smectic structures. As expected, the copolymers had lower melting transitions than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer methoxyhydroquinone.
Resumo:
A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.
Resumo:
Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.
Resumo:
In this paper, we studied the reactions of both potassium ferricyanide and hexaammineruthenium(III) chloride at a 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) by scanning electrochemical microscopy (SECM) in different pH solutions. The surface of the modified electrode has carboxyl groups, the dissociation of which are strongly dependent upon the solution pH values. The rate constant kb of the oxidation of ferrocyanide on the modified electrode can be obtained by fitting the experimental tip current-distance (I-T-d) curves with the theoretical values. The surface pK(a) of the 4-ABA modified GCE was estimated from the plot of standard rate constant k(o) versus the solution pH and is equal to 3.2, which is in good agreement with the reported result. The SECM approach curves for Ru(NH3)(6)(3+) both on the bare and the modified electrodes show similar diffusion control processes. These results can be explained by the electrostatic interactions between the modified electrode surface and the model compounds with different charges. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
(2,4-C7H11)(2)Yb . DME was synthesized by the reaction of YbCl3 with K(2,4-C7H11)(2,4-dimethylpentadienyl potassium), and the single crystal X-ray diffraction showed that the complex exists in a cis- staggered conformation. Thf crystal of the compound belongs to the monoclinic space group P2(1)/n with a = 0.675 2 (1) nm, b = 1.490 6 (1) nm, c = 1.529 3 (2) nm, beta = 97.55 (2)degrees, V = 1.977 79 (4) nm(3), Z = 4, F(000) = 735.8 e, mu = 49.49 cm(-1), R = 0.033 and R-w = 0.032. The title complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.
Resumo:
In order to understand the relationship between the molecular orientation and optical properties of oligophenylenevinylene film, oriented thin films of 1,4-di(p-methoxystyryl)benzene (DSB-1) and 1,4-di(p-methoxystyryl)-2,5-dimethoxybenzene (DSB-2) were fabricated on a potassium bromide (KBr) (001) surface by the vacuum-evaporation method. The structures and optical properties of DSB films have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and polarized photoluminescence (PL) spectroscopy, respectively. DSB-1 molecules orient obliquely and/or parallel to the substrate surface depending on the substrate temperature. On the other hand, DSB-2 molecules tend to grow epitaxially with the molecular plane parallel to the substrate surface. The anisotropic molecular orientations represent the polarized PL. The epitaxial growth and molecular orientations observed by TEM and AFM at the local and microscopic scale are confirmed by polarized PL measurement on a macroscopic scale. (C) 1999 American Institute of Physics. [S0021-8979(99)01523-6].
Resumo:
A new photochromic bisphenoxynaphthacenequinone compound, 6,6'-[1-methylethylidenebis (4,1-phenyleneoxy)]bis (5,12-naphthacenequinone) (1), was synthesized by a two-step method, i.e., synthesis of 6-[4-(2-(4-hydroxyphenyl)isopropyl) phenoxy]-5, 12-naphthacenequinone (2) from 6-chloro-5, 12-naphthacenequinone (3) and bisphenol-A, and a further reaction of compound 2 in DMF/acetone mixed solvent in the presence of anhydrous potassium carbonate and potassium iodide. The crude product is obtained in a precipitate form and can easily be purified by recrystallization. The solvent composition has marked influence on the yield of the precipitated crude product in the second step.
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.