157 resultados para PHOTOCHEMICAL DECOMPOSITION
Resumo:
A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microcalorimetric studies of H-2, NH3 and O-2 adsorption, as well as the NH3 decomposition activities evaluation were used to characterize the iridium catalysts for hydrazine decomposition with different supports (Al2O3, SiO,) and iridium contents (1.8, 10.8 and 22.1%). The higher H-2 chemisorption amounts on Ir/Al2O3 catalysts than those on the corresponding Ir/SiO2 counterparts revealed that the strong interaction of iridium and Al2O3 led to higher dispersion of iridium on Ir/Al2O3 catalysts than on Ir/SiO2 catalysts. The larger increase in strong H-2 adsorption sites on highly loaded Ir/Al2O3 than the corresponding Ir/SiO2 ones could be attributed to the interaction not only between iridium atoms but also between iridium and Al2O3. The microcalorimetric results for NH3 adsorption showed that no apparent chemisorption of NH3 existed on Ir/SiO2 catalysts while NH3 chemisorption amounts increased on Ir/Al2O3 catalysts with iridium loadings, which arose from the interaction of the catalysts support of Al2O3 With chloride anion. Both highly dispersed iridium active sites and chloride anion on Ir/Al2O3 catalysts could be beneficial to the intermediate NH3 decomposition in N2H4 decomposition. The similar O-2 plots of differential heat versus normalized coverage on Ir/Al2O3 and Ir/SiO2 catalysts could not be due to the metal-support interaction, but to the formation of strong Ir-O bond. (C) 2005 Elsevier B.V. All rights reserved.