160 resultados para Organic solar cells


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grignard metathesis (GRIM) polymerization for all-conjugated diblock copolymers comprising poly (2,5-dihexyloxy-1,4-phenylene) (PPP) and poly(3-hexylthiophene) (P3HT) blocks were systematically studied with LiCl as additive and 1,2-bis (diphenylphosphino) ethane nickel dichloride (Ni(dppe)Cl-2) or 1,3-bis(diphenylphosphino) propane nickel dichloride (Ni(dppp)Cl-2) as catalyst. It was found that the addition order of the monomers was crucial for the success of copolymerization. With the monomer addition in the order of phenyl and then thienyl Grignard reagents, all-conjugated PPP-b-P3HT diblock copolymers with different block ratios were successfully synthesized. In contrast, the inverted addition order only afforded a mixture containing both block copolymers and deactivated or end-capped homopolymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ferrocene-functionalised thiophene derivatives (TFn) with different length of oxyethylene chains were synthesized and polymerized chemically with iron (III) chloride as an oxidant. The resulting ferrocene-functionalised polythiophenes (PTFn) show good solubility in most solvents, such as chloroform (CHCl3) tetrahydrofuran (THF), acetone, etc. The structure and properties of the PTFn polymers were confirmed by IR, H-1 NMR, AFM and photoluminescence (PL). The polymers PTFn show good redox activity with no attenuation of the electroactivity after multiple potential cycling. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin poly(3-butylthiophene) (P3BT) film composed of aligned lamellae attached to the edge of the original film has been achieved via a controlled solvent vapor treatment (C-SVT) method. The polarized optical microscopy operated at both single-polarization and cross-polarization modes has been used to investigate the alignment of the fiber-like lamellae. A numerical simulation method is used to quantitatively calculate angle distributions of the lamellae deviated from the film growth direction. Prepatterned P3BT film edge acts as nuclei which densely initialize subsequent crystal growth by exhausting the materials transported from the partially dissolved film. The growth of new film upon crystallization is actually a self-healing process where the two-dimensional geometric confinement is mainly responsible for this parallel alignment of P3BT crystals. The solvent vapor pressure should be carefully chosen so as to induce crystal growth but avoid liquid instability which will destroy the continuity of the film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles has been developed. The core-shell nanostructures with NH4Cl as core and TiO2 center dot xH(2)O-NH4Cl as shell were prepared in nonaqueous system by the deposition on the surface of the aggregated NH4Cl crystals, which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500A degrees C or extraction with methanol, respectively. The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomaterials, demonstrated by the UV light photodegradation of Methyl Orange.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Needle-like single crystals of poly(3-octylthiophene) (P3OT) have been prepared by tetrahydrofuran-vapor annealing. The morphology and structure of the crystals were characterized with optical microscopy, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and wide-angle X-ray diffraction. It is observed that the P3OT molecules are packed with the backbones parallel to the length axis of the crystal and the alkyl side chains perpendicular to the substrate. The field effect transistor based on the P3OT single crystal exhibited a charge carrier mobility of 1.54 x 10(-4) cm(2)/(Vs) and on/off current ratio of 37, and the molecular orientation of the crystal is ascribed to account for the device performance. The time-dependent morphological evolution demonstrated that the crystals underwent Ostwald ripening when annealed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface photovoltage spectra (SPS) measurements of TiO2 show that a large surface state density is present on the TiO2 nanoparticles and these surface states can be efficiently decreased by sensitization using US nanoparticles as well as by suitable heat treatment. The photoelectrochemical behavior of the bare TiO2 thin film indicates that the mechanism of photoelectron transport is controlled by the trapping/detrapping properties of surface states within the thin films, The slow photocurrent response upon the illumination can be explained by the trap saturation effect. For a TiO2 nanoparticulate thin film sensitized using US nanoparticles, the slow photocurrent response disappears and the steady-state photocurrent increases drastically, which suggests that photosensitization can decrease the effect of surface states on photocurrent response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.