166 resultados para Optical bandgap
Resumo:
The objective of this study is to improve the stability of pumping source of optical parametric amplifier. Analysis by simulation leads to the conclusion that the stability of the second harmonic can be improved by using properly the intensity of fundamental light and corresponding length of the crystal. By the method of the noncollinear two-pass second harmonic or the tandem second harmonic, the efficient crystal length is extended to a proper value, and the stability of the second harmonic output has been improved two times more than that for the fundamental light, and the conversion-efficiency is about 70% in experiment. When the variation of the fundamental light is about 10%, the variation of the second harmonic intensity has been controlled within 5%. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a destructive method for detecting and measuring subsurface damage of Nd-doped phosphate glasses. An instrument based on the dimple method - a destructive method - was developed. Subsurface damage depth produced in each fabrication procedure was obtained. We extend the surface roughness-subsurface damage relation to Nd-doped phosphate glasses. The constant ratio of subsurface damage and surface roughness was obtained as well. We also analyse the relation of abrasive size and subsurface damage experimentally. From a measurement of the surface roughness or abrasive size, one can obtain an accurate estimate of the damage layer thickness that must be eliminated by polishing or subsequent grinding operations. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Based on the interferential theory, we deduce a new type of analytic expression suitable for describing the evolutions of the optical bottle beam generated from the axicon-lens optical system illuminated by the Gaussian beam for the first time. The theory does not use much approximation in the process of mathematical analysis and can better illustrate the optical bottle beam evolutions at any positions. With the derived expression, the three-dimensional (3D) longitudinal and transverse intensity profiles of the optical bottle beam are simulated numerically. The numerical calculations have been confirmed by the experimental results.
Resumo:
In optical parametric chirped pulse amplification (OPCPA), the degradation of temporal contrast of the compressed signal pulse mainly results from spectral clipping in the grating stretcher with finite size of the optics, parametric fluorescence (PF) and the spectral variations transferred from temporal fluctuation of the pump pulse. The temporal contrast of the recompressed amplified pulse in the OPCPA system is studied numerically and a number of solutions are considered and optimized to achieve the highest temporal contrast.
Resumo:
WE have designed a dual-beam magneto-optical (MO) storage system to test the dynamic storage properties of MO disks. The characteristics of this dual-beam system are demonstrated. Magnetic field modulated direct overwrite, which is a promising technique for highspeed MO storage, is realized on TbFeCo MO disks with this dual-beam MO system. The effect of light intensity, magnetic field intensity, and linear velocity of the disk and the modulating frequency variation on carrier-to-noise ratio is investigated. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A relatively simple scheme for disk-type photopolymer high-density holographic storage based on angular and spatial multiplexing is described. The effects of the optical setup on the recording capacity and density are studied. Calculations and analysis show that this scheme is more effective than a scheme based on the spatioangular multiplexing for disk-type photopolymer high-density holographic storage, which has a limited medium thickness. Also an optimal beam recording angle exists to achieve maximum recording capacity and density. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The time response of optical switching properties of Sb thin films under focused laser pulses is investigated. The results show that the response course can be divided into onset, opening, and closing stages. Formulas for their lengths are given. The onset and opening times decrease with increasing pumping light power density. The closing time is about 150 ns. For optical memory, if the power density of the readout and recording lasers changes from 5 x 10(9) to 15 x 10(9) W/m(2), the onset time changes from 2.5 to 0.30 mus, and the opening time is on the nanosecond scale. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have proposed a new confocal readout system which is based on the combination of two N-zone circular phase-only transverse superresolving pupils to improve transverse superresolution. The procedure for designing such an improved system is presented. Results of comparisons between the performance of the proposed system and the transverse superresolving pupils indicate that with the same Strehl ratio the former has much higher transverse superresolution capacity and significantly lower sidelobe intensity. (c) 2005 Society of Photo-Optical Instrumentation Engineers.