209 resultados para Nickel.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical, structural and reaction characteristics of In-based ohmic contacts to n-GaAs were studied. Attempts were made to form a low-band-gap interfacial phase of InGaAs to reduce the barrier height at the metal/semiconductor junction, thus yielding low-resistance, highly reliable contacts. The contacts were fabricated by e-beam sputtering Ni, NiIn and Ge targets on VPE-grown n(+)-GaAs film (approximate to 1 mu m, 2 x 10(18) cm(-3)) in ultrahigh vacuum as the structure of Ni(200 Angstrom)/NiIn(100 Angstrom)/Ge(40 Angstrom)/n(+)-GaAs/SI-GaAs, followed by rapid thermal annealing at various temperatures (500-900 degrees C). In this structure, a very thin layer of Ge was employed to play the role of heavily doping donors and diffusion limiters between In and the GaAs substrate. Indium was deposited by sputtering NiIn alloy instead of pure In in order to ensure In atoms to be distributed uniformly in the substrate; nickel was chosen to consume the excess indium and form a high-temperature alloy of Ni3In. The lowest specific contact resistivity (rho(c)) of (1.5 +/- 0.5)x 10(-6) cm(2) measured by the Transmission Line Method (TLM) was obtained after annealing at 700 degrees C for 10 s. Auger sputtering depth profile and Transmission Electron Microscopy (TEM) were used to analyze the interfacial microstructure. By correlating the interfacial microstructure to the electronical properties, InxGa1-xAs phases with a large fractional area grown epitaxially on GaAs were found to be essential for reduction of the contact resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed experimental study of electron cyclotron resonance (CR) has been carried out at 4.2 K in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well samples in fields up to 30 T. A strong avoided-level-crossing splitting of the CR energies due to resonant magnetopolaron effects is observed for all samples near the GaAs reststrahlen region. Resonant splittings in the region of AlAs-like interface phonon modes of the barriers are observed in two samples with narrower well width and smaller doping concentration. The interaction between electrons and the AlAs interface optical phonon modes has been calculated for our specific sample structures in the framework of the memory-function formalism. The calculated results are in good agreement with the experimental results, which confirms our assignment of the observed splitting near the AlAs-like phonon region is due to the resonant magnetopolaron interaction of electrons in the wells with AlAs-like interface phonons. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diffractive microlens with a cascade focal plane along the main optical axis of the device is fabricated using a low-cost technique mainly including single mask ultraviolet (UV) photolithography and dual-step KOH:H2O etching. Based on the evolutionary behavior of converse pyramid-shaped microholes (CPSMs) preshaped over a {100}-oriented silicon wafer in KOH etchant, the first-step KOH etching is performed to transfer initial square micro-openings in a SiO2 film grown by plasma enhanced chemical vapor deposition (PECVD) and patterned by single mask UV-photolithography, into CPSMs with needed dimension. After completely removing a thinned SiO2 mask, basic annular phase steps with a relatively steep sidewall and scheduled height can be shaped in the overlapped etching region between the neighboring silicon concave-arc microstructures evolved from CPSMs through the second-step KOH etching. Morphological measurements demonstrate a desirable surface of the silicon microlens with a roughness in nanometer scale and the feature height of the phase steps formed in the submicrometer range. Conventional optics measurements of the plastic diffractive microlens obtained by further hot embossing the fine microrelief phase map over the nickel mask made through a common electrochemical method indicate a highly efficient cascaded focusing performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The improved mechanical properties of surface nano-crystallized graded materials produced by surface severe plastic deformation ((SPD)-P-2) are generally owing to the effects of the refined structure, work-hardened region and compressive residual stress. However, during the (SPD)-P-2 process, residual stress is produced simultaneously with work-hardened region, the individual contribution of these two factors to the improved mechanical properties remains unclear. Numerical simulations are carried out in order to answer this question. It is found that work hardening predominates in improving the yield strength and the ultimate tensile strength of the surface nano-crystallized graded materials, while the influence of the residual stress mainly emerges at the initial stage of deformation and decreases the apparent elastic modulus of the surface nano-crystallized graded materials, which agrees well with the experimental results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用等温凝固方法研究了单晶镍基合金的凝固区间,利用DSC测试了合金的凝固曲线.结果表明:实验合金的液相线温度约为1380℃,固相线温度约为1310℃.合金的凝固顺序为: Lγ,L MC;γγ′;Lγ+MC.单晶合金的铸态组织中,W偏析于枝晶干, Ti,Cr,Mo和Ta偏析于枝晶间,偏析程度为: Mo>Ti>Cr>Ta, Al和Co几乎不发生偏析.1314℃1382℃1361℃1325℃

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of previous work, the hyperfine-induced 3s3p P-3(2) -> 3s(2) S-1(0) E1 transition probabilities of Mg-like ions were further calculated using the GRASP2K package based on the multiconfiguration Dirac-Hartree-Fock method. The contribution to the lifetime of the P-3(2) level from the 3s3p P-3(2) -> 3s(2) S-1(0) hyperfine-induced E1, 3s3p P-3(2) -> 3s3p P-3(1) M1, 3s3p P-3(2) -> 3s(2) S-1(0) M2 and 3s3p P-3(2) -> 3s3p P-3(0,1) E2 transition was discussed in detail. It was found that hyperfine interaction has an obvious effect on the lifetime at the beginning of the Mg-like isoelectronic sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).