267 resultados para Molar-incisor hypomineralization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of nickel(II) complexes bearing two nonsymmetric bidentate beta-ketoiminato chelate ligands have been prepared, and the structures of complexes [(2,6-Me2C6H3)NC(CH3)C(H)C(Ph)O](2)Ni (4a) and [(2,6-Me2C6H3)NC(CH3)C(H)C(CF3)O](2)Ni (4c) have been confirmed by X-ray crystallographic analysis. These nickel(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce high molecular weight polymers. Catalytic activity of up to 1.16 x 10(4) kg/mol(Ni) .h and the viscosity-average molecular 9 weight of polymer of up to 870 kg/mol were observed. Catalyst activity, polymer yield, and polymer molecular weight could be controlled over a wide range by the variation of the reaction parameters such as Al/Ni molar ratio, norbornene/catalyst molar ratio, monomer concentration, polymerization reaction temperature and time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CeF3 and lutetium-doped CeF3 nanoparticles with the dopant concentration of 17, 25, 30, 42 and 50 mol% (molar ratio, Lu/Ce) were synthesized. XRD patterns were indexed to a pure CeF3 hexagonal phase even under the dopant concentration of 50 mol%. Environmental scanning electron microscopy-field emission gun (ESEM-FEG) was used to characterize the morphology of the final products. From the luminescence spectra of the products, we can get a broad emission ranging from 290 to 400 nm with peak at 325 nm. Lutetium-doping increases the luminescence intensity. We got. the most intense luminescence at the dopant concentration of 30 mol%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Europium-doped barium fluoride cubic nanocolumns were synthesized from the quaternary water in oil reverse microemulsions In this process, the aqueous cores of water/cetyl trimethyl ammonium bromide (CTAB)/n-butanol/n-octane reverse microemulsions were used as microreactors for the precipitation of europium doped barium fluoride. XRD analysis shows that under the dopant concentration of 0.06% (molar fraction), the products are single phase. The result products are cubic column-like with about 30 similar to 50 nm edge length of cross section, and about 200 nm of length obtained from the transmission electron microscopy (TEM), and atomic force microscopy (AFM). Under the 0.06 % (molar fraction) of dopant concentration I the fluorescence of Eu2+ and Eu3+ under the 589 of excitation wavelength is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viscosities of aqueous solutions of five polyethylene oxide (PEO) samples with molar masses from 1.5 x 10(5) to 1.0 x 10(6) were carefully measured in a polytetrafluoroethylene (PTFE) capillary Ubbelohde viscometer in the concentration range from dilute down to extremely dilute concentration regions and compared with those of the same sample obtained from a glass capillary viscometer. At the same time, viscosities of aqueous solutions of three PEG samples in glass and paraffin-coated capillary viscosity were measured. The wall effects occurred in viscosity measurements for PEO and PEG aqueous solutions in different capillary viscometers were theoretically analyzed and discussed. It was found that different interfacial behaviors occurred in both hydrophobic and hydrophilic capillary viscometers respectively and the interfacial behaviors also exhibit molar mass dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and crystalline properties of random copolymer of epsilon-caprolactone (CL) and 2,2-dimethyl trimethylene carbonate (DTC) prepared by lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) (La(OAr)(3)) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and wide-angle X-ray diffraction (WAXD). Fox equation interprets the relationship between glass transition temperature (T-g) and copolymer compositions. T-g decreases from PDTC (16.7degreesC) to PCL (-65.1degreesC), reflecting the internal plasticizing effect of CL units on DTC units in the copolymers. The introduction of CL units to PDTC can effectively improve its heat resistance. Small amount of DTC (5% molar) in PCL chain improves the mechanical properties of the polymer, which had elongation of 1000, much higher than that of PCL (8.8).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel proton-conducting gelatinous electrolytes templated by room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF(4)) have been prepared in methylsisesquioxane backbone containing H3PO4, and the influences of the RTIL on the structure, morphology, thermal stability, and electrochemical properties of the gelatinous electrolytes have been examined. X-ray diffraction and scanning electron microscopy proved that BMImBF(4) acted as structure-directing template during the sol-gel process of methyl-trimethoxysilane. X-ray photoelectron spectra and infrared spectroscopy demonstrated that the hydrogen-bonding was formed between BMImBF(4) and H3PO4. The electrolytes had good thermal stability up to 300 degreesC and showed superior mechanical and electrochemical properties. A room-temperature conductivity of 1.2 x 10(-3) S cm(-1) was obtained for the electrolyte at the molar ratio of RTIL/Si/H3PO4 0.3/1/1, and its electrochemical window was up to 1.5 V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IrO2/SnO2 (10%:90%, molar ratio) electrodes (ITEs) were prepared by the sol-gel method as an alternative to the electrode-position and thermal decomposition process. The electrodes were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). From the results of XRD, oxide films prepared at low temperature were in amorphous state, while hydrous IrO2 crystal and cassiterite phase SnO2 were formed at 300 degreesC or even to 500 degreesC. The highly porous structure was confirmed by AFM. The electrochemical experiments demonstrated that the sol-gel method made the ITEs having a fast electron transfer process with good stability and the optimal preparation temperature was 400 degreesC for the highest electroactivity. Furthermore, the electrocatalysis of pyrocatechol on the electrodes was investigated. A quasi-reversible process occurred and a linear range over three orders magnitude (1 x 10(-2) - 10 mM) was obtained by differential pulse voltammetry (DPV). Meanwhile the detection limit of pyrocatechol was 5 x 10(-3) mM. This study indicated that the sol-gel method was an appropriate route to prepare the IrO2/SnO2 electrodes for the electrocatalytic of pyrocatechol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 5060 nm and lengths of more than 1 mu m were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl4) through a self-assembly process in the presence Of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl4 and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximate to 77.2S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near-infrared (NIR) luminescent lanthanide ions, such as Er(III), Nd(III), and Yb(III), have been paid much attention for the potential use in the optical communications or laser systems. For the first time, the NIR-luminescent Ln(dbm)(3)phen complexes have been covalently bonded to the ordered mesoporous materials MCM-41 and SBA-15 via a functionalized phen group phen-Si (phen-Si = 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline; dbm = dibenzoylmethanate; Ln = Er, Nd, Yb). The synthesis parameters X = 12 and Y = 6 h (X denotes Ln(dbM)(3)(H2O)(2)/phen-MCM-41 molar ratio or Ln(dbM)(3)(H2O)(2)/phenSBA-15 molar ratio and Y is the reaction time for the ligand exchange reaction; phen-MCM-41 and phenSBA-15 are phen-functionalized MCM-41 and SBA-15 mesoporous materials, respectively) were selected through a systematic and comparative study. The derivative materials, denoted as Ln(dbM)(3)phen-MCM-41 and Ln(dbm)(3)phen-SBA-15 (Ln = Er, Nd, Yb), were characterized by powder X-ray diffraction, nitrogen adsorption/desorption, Fourier transform infrared (FT-IR), elemental analysis, and fluorescence spectra. Upon excitation of the ligands absorption bands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide ions through the intramolecular energy transfer from the ligands to the lanthanide ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berlin green FeFe(CN)(6) microcubic crystals have been successfully prepared by a simple hydrothermal process between K-3[Fe(CN)(6)] with Na2S2O3 aqueous solution, free of any surfactant or template. The experimental results clearly show that the molar ratio of K-3[Fe(CN)(6)] to Na2S2O3 and their concentrations are the dominant processing factors in controlling the size, morphology, and composition of the resulting products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As-synthesized ZnO nanostructures with a bladed bundle-like architecture have been fabricated from a flower-like precursor ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O via a mechanism of dissolution - recrystallization. Experimental conditions, such as initial reactants and reaction time, are examined. The results show that no bladed bundle-like ZnO hierarchical nanostructures can be obtained by using the same molar amount of other zinc salts, such as ZnBr2, instead of the flower-like ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O precursor, and keeping other conditions unchanged. The products were characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The ZnO nanostructures are mainly composed of nanowires with a diameter around 40 - 50 nm and length up to 1.5 - 2.5 mu m. Meanwhile, ZnO nanoflakes with a thickness of about 4 - 5 nm attached to the surface of ZnO nanowires with a preferred radially aligned orientation. Furthermore, the photoluminescence (PL) measurements exhibited the unique white-light-emitting characteristic of hierarchical ZnO nanostructures. The emission spectra cover the whole visible region from 380 to 700 nm.