166 resultados para Methanol crossover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Nafion (R) membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion (R)-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using membrane gets higher as ethanol solution gas chromatography analysis. The experimental results show that the swelling degree of Nafion (R) concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A five-layer catalyst coated membrane (CCM) based upon Nation 115 membrane for direct methanol fuel cell (DMFC) was designed and fabricated by introducing a modified Nafion layer between the membrane and the catalyst layer. The properties of the CCM were determined by SEM, cyclic voltammetry, impedance spectroscopy, ruinous test and I-V curves. The characterizations show that the modified Nation layers provide increased interface contact area and enhanced interaction between the membrane and the catalyst layer. As a result, higher Pt utilization, lower contact resistance and superior durability of membrane electrode assembly was achieved. A 75% Pt utilization efficiency was obtained by using the novel CCM structure, whereas the conventional structure gave 60% efficiency. All these features greatly contribute to the increase in DMFC performance. The DMFC with new CCM structure presented a maximum power density of 260 MW cm(-2), but the DMFC with conventional structure gave only 200 mW cm(-2) under the same operation condition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2 μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary corrections for all factors, our experiments show that the influence of the sedimentation on coagulation rates at the initial stage of the coagulation is not observable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对柴油、甲醇和水三组元乳化液的流变特性进行了研究。实验发现,乳化液在本实验的组分配比下近似为牛顿流体,而且乳化剂的种类、含量以及乳化液的组分均对乳化液的流变特性具有显著的影响。对于组分相同的乳化液,乳化液的粘度随着乳化剂含量和粘度的增加而增加;当乳化剂的含量和粘度相同时,若甲醇和水之间的相对质量分数保持不变,减少乳化液中柴油的质量分数(不少于50%),乳化液的粘度随之增加。水和甲醇的含量对乳化液粘度的影响比较复杂,还需要做深入细致的机理研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

分别采用激光全息摄影技术和高速数字摄影技术观察了柴油、甲醇和水乳化液喷雾在高温高压(773K,3.1MPa)环境中发生微爆现象的瞬间和全过程,证实了微爆现象的存在.由于微爆机理的复杂性,尚难以用数学方法准确描述该过程.实验分析表明:若环境温度处于"最佳温度"范围内,乳化液滴表面首先形成"无水层",液滴内部形成一个水滴的概率很小,可能形成几个相对较大的水滴,只要其中一个较大水滴的蒸汽压力大于液滴的表面张力和环境压力之和,液滴就有可能发生微爆,微爆不仅与液滴直径、组分的质量分数和组分间的沸点差等乳化液的本身特性有关,而且环境温度和压力的影响也不容忽视.该研究可以为乳化液喷雾微爆过程的数学模拟提供参考.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spray of emulsified fuel, composed of diesel fuel, water and methanol can make micro-explosion under high temperature conditions, and the viscosity and the atomization characteristics of emulsion have significant effects on the micro- explosion of emulsions. To clarify the combustion mechanism of water-in-oil emulsion sprays, combustion bomb experiments were carried out, and the droplet group micro- explosions in W/O fuel emulsion sprays in a high-pressure, high-temperature bomb were observed clearly by a multi-pulsed, off-axis, image-plane ruby laser holocamera and continuously by a high-speed CCD camera.The viscosity and atomization characteristics of emulsions were also studied experimentally. The experimental results show that the higher concentration of the aqueous phase (water-methanol) (<50%) increases the viscosity of the emulsions, especially for higher agent concentration, and higher aqueous phase concentration and higher viscosity results in lager Sauter Mean Diameter (SMD). The experiment results also show that the different kinds of emulsifying agents, with different Hydrophile-Lipophile Balance (HLB) values, have significant influence on the viscosity of the emulsions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用溶胶-凝胶法制作波导环形谐振腔, 讨论了环形谐振腔器件的传输特性。测量了在不同物质、不同体积分数的挥发性有机化合物(VOC)蒸气气氛下器件的传输光谱的敏感性。结果表明, 谐振波长随甲醇、乙醇、丙醇等醇类化合物, 以及丙酮、甲醛等蒸气体积分数的上升而向长波方向移动, 具有高的灵敏度, 且两者基本呈线性关系。其中, 对丙醇最敏感, 灵敏度达到1.403 pm/10-6。对甲烷和二甲苯也有微弱反应, 但是其灵敏度很低。也测量了水蒸气对传输谱特性的影响。观察到传输谱衬比度对不同挥发性有机化合物物质蒸气的不同敏