246 resultados para Methacrylate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary CNBR/PP-g-GMA and ternary CNBR/PP/PP-g-GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP-g-GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP-g-GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP-g-GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP-g-GMA, T, of PP-g-GMA in CNBR/PP-g-GMA blends increased about 10degreesC. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP-g-GMA in CNBR/PP-g-GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP-g-GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP-g-GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP-g-GMA blends were greatly improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mononuclear Cu-I complexes with mixed ligands are used to fabricate green phosphorescent organic light-emitting diodes. The electroluminescence (EL) maximum at 524 nm coincides well with its photoluminescent (PL) spectrum in poly(methyl methacrylate) film (see Figure). A maximum current efficiency of 10.5 cd A(-1) at 105 cd m(-2) and a maximum brightness up to 1663 cd m(-2) are

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To simplify the fabrication of multilayer light-emitting diodes, we prepared a p-phenylenevinylene-based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p-phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet-visible (UV-vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV-vis absorption spectra and atomic force microscopy. Double-layer devices using crosslinked PPVD as an emitting layer, 2-(4-tert-butylphenyl)-5-phenyl-1,3,4-oxadiazole (PBD) in poly(methyl methacrylate) as an electron-transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m(2) at 16 V were demonstrated. A 12-fold improvement in the luminance efficiency with respect to that of single-layer devices was realized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient, productive, and low-cost aerosol-assisted self-assembly process has been developed to produce organically modified mesoporous silica particles via a direct co-condensation of silicate species and organosilicates that contain nonhydrolyzable functional groups in the presence of templating surfactant molecules. Different surfactants including cetyltrimethylammonium bromide, nonionic surfactant Brij-56, and triblock copolymer P123 have been used as the structure-directing agents. The organosilanes used in this study include tridecafluoro-1, 1,2,2-tetrahydrooctyltriethoxysilane, methytriethoxysilane, vinyltrimethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate. X-ray diffraction and transmission electron microscopy studies indicate the formation of particles with various mesostructures. Fourier transform infrared and solid-state nuclear magnetic resonance spectra confirm the organic ligands are covalently bound to the surface of the silica framework. The porosity, pore size, and surface area of the particles were characterized using nitrogen adsorption and desorption measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the morphology and phase behaviors of blend thin films containing two poly styrene-b-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a(1) and a(2), have similar molecular weights but different volume fractions of PS block (f(PS) = 0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a(1), was also used. For the asymmetric a(1)/a(2) blend thin films, circular multilayered structures were formed. For the asymmetric a(1)/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically studied the thin film morphologies of symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer after annealing to solvents with varying selectivity. Upon neutral solvent vapor annealing, terraced morphology is observed without any lateral structures on the surfaces. When using PS-selective solvent annealing, the film exhibits macroscopically flat with a disordered micellar structure. While PMMA-selective solvent annealing leads to the dewetting of the film with fractal-like holes, with highly ordered nanoscale depressions in the region of undewetted films. In addition, when decreasing the swelling degree of the film in the case of PMMA-selective solvent annealing, hills and valleys are observed with the coexistence of highly ordered nanoscale spheres and stripes on the surface, in contrast to the case of higher swelling degree. The differences are explained qualitatively on the basis of polymer-solvent interaction parameters of the different components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamics of dewetting and phase separation in ultrathin films (thickness is ca. one radius of gyration, approximate to 1 R-g) of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blends on Si substrate has been studied by in situ atomic force microscopy (AFM). In the miscible region, a "spinodal-like" dewetting driven by a composition fluctuation recently predicted by Wensink and Jerome (Langmuir 2002, 18, 413) occurs. In the two-phase region, the dewetting of the whole film is followed by phase separation in the droplets, coupling with the wetting of the substrate by the PMMA extracted by the strong attractive interaction between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A responsive polymer composite film was generated by the use of reversibly switchable Surface morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films in response to different block selective solvents on the rough isotactic poly(propylene) (i-PP) substrate. The Maximum difference of the water contact angle of the composite films increased from 22.6 degrees of PS-b-PMMA films on the smooth substrate to 42.6 degrees when they were treated by PS and PMMA selective solvents, respectively. The mechanisms of the responsive extent enhanced and the superhydrophobicity of the composite films were discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new asymmetric H-shaped block copolymer (PS)(2)-PEO-(PMMA)(2) has been designed and successfully synthesized by the combination of atom transfer radical polymerization and living anionic polymerization. The synthesized 2,2-dichloro acetate-ethylene glycol (DCAG) was used to initiate the polymerization of styrene by ATRP to yield a symmetric homopolymer (Cl-PS)(2)-CHCCCCH2CH2OH with an active hydroxyl group. The chlorine was removed to yield the (PS)(2)-CHCOOCH2CH2OH ((PS)(2)-OH). The hydroxyl group of the (PS)(2)-OH, which is an active species of the living anionic polymerization, was used to initiate ethylene oxide by living anionic polymerization via DPMK to yield (PS)(2)-PEO-OH. The (PS)(2)-PEO-OH was reacted with the 2,2-dichloro acetyl chloride to yield (PS)(2)-PEO-OCCHCl2 ((PS)(2)-PEO-DCA). The asymmetric H-shaped block polymer (PS)(2)-PEO-(PMMA)(2) was prepared via ATRP of MMA at 130 degrees C using (PS)(2)-PEO-DCA as initiator and CuCl/bPy as the catalyst system. The architectures of the asymmetric H-shaped block copolymers, (PS)(2)-PEO-(PMMA)(2), were confirmed by H-1 NMR, GPC and Fr-IR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used Monte Carlo simulation to study the micellization of ABC 3-miktoarm star terpolymers in a selective solvent (good to A segment, bad to B and C segments). The simulation results reveal that the self-assembled morphology is determined by the block length, molecular architecture, terpolymer concentration and insolubility of insoluble block in the solvent. In dilute solution, symmetric terpolymers (N-B = N-C = 30) tend to aggregate into a novel wormlike pearl-necklace structure linked by an alternating arrangement of B and C spheres, whereas the asymmetric terpolymers (NB = 10, NC = 50) are likely to aggregate into spherical or cylindrical micelles (formed by C blocks) connected with some small B spheres, when the concentration of terpolymer is relatively low (chain number is 100). However, when the concentration of terpolymer is relatively high (chain number is 250), the symmetric terpolymers tend to aggregate into a netlike structure linked by an alternation of B and C spheres, whereas the asymmetric terpolymers are likely to aggregate into wormlike micelles (formed by C blocks) connected with some of small spheres (formed by B blocks). Moreover, when the insolubility of insoluble block in the solvent is weak, the insoluble blocks aggregate into some incompact micelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersion copolymerization of acrylamide (AM) with 2-methylacryloylxyethyl trimethyl ammonium chloride (DMC) has been carried out in aqueous salts solution containing ammonium sulfate and sodium chloride with poly(acryloylxyethyl trimethyl ammonium chloride) (PDAC) as the stabilizer and 2,2'-azobis[2-(2-inidazolin-2-yl)propane]-dihydro chloride (VA-044) as the initiator. A new particle formation mechanism of the dispersion polymerization for the present system has been proposed. The effects of inorganic salts and stabilizer concentration on dispersion polymerization have been investigated. The results show that varying the salt concentration could affect the morphology and molecular weight of the resultant copolymer particles significantly. With increasing the stabilizer concentration, the particle size decreased at first and then increased, meanwhile the effect on the copolymer molecular weight was the contrary. These results had been rationalized based on the proposed mechanism.