205 resultados para Meiduk Area
Resumo:
A novel "bottom-up" approach to highly controllable nanoelectrode ensembles (NEEs) has been developed using colloidal nanoparticle self-assembly techniques. Ibis solution-based strategy allows flexible control over nanoelectrode size, shape, and interspacing of the as-prepared NEEs. Atomic force microscopy (AFM) was proved to be a powerful tool to monitor the NEE topography, which yields parameters that can be used to calculate the fractional nanoelectrode area of the NEEs. AFM, ac impedance, and cyclic voltammetry studies demonstrate that most of nanoelectrodes on the NEEs (at least by 9-min self-assembly) are not diffusionally isolated under conventional ac frequency range and scan rates. As a result, the NEEs behave as "nanoelectrode-patch" assemblies. Besides, the as-prepared NEEs by different self-assembling times show an adjustable sensitivity to heterogeneous electron-transfer kinetics, which may be helpful to sensor applications. Like these NEEs constructed by other techniques, the present NEEs prepared by chemical self-assembly also exhibit the enhancement of electroanalytical detection limit consistent with NEE theory prediction.
Resumo:
A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Underpotential deposition(UPD) of copper at polycrystal gold surface under different concentrations has been studied, and its reversibility and stability in high concentration (0.2M CuSO4+0.IM H2SO4) have been demonstrated by cyclic voltermmetry and EQCM. A Valid approach to determine the gold electrode area in presence of adsorbed species has been provided by using Cu UPD method. Further, the growth kinetics of decane thiol on gold has also been investigated based on such a Cu UPD technique.
Resumo:
A novel constant interfacial cell with laminar flow is proposed as an approach to obtain extraction kinetics data in liquid-liquid systems. Applications and theoretical fundamentals of the apparatus have been elaborated.. The equation which can express the mass transfer of liquid-liquid system run in the constant interfacial cell with laminar flow is deduced. Simulations from the equations indicate that diffusivity is a suitable factor to represent the characteristics of extraction kinetics rather than the extraction rate in the diffusion controlling step. The dependence of the aqueous phase concentration on time is recommended to determine the extraction regime. The diffusivities of the EuCl3-HDEHP extraction system obtained by different methods are compared to certify the hydrodynamic theory of the cell. The diffusivities of the ErCl3-HEH/EHP extraction system are determined, which show that this technique is a convenient method to obtain the diffusivities in the liquid-liquid system and to determine the extraction regime. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to characterize the interface in polymer blends, a new method is suggested, in which the interface is exposed by selectively dissolving in solvent. By means of X-ray photoelectron spectrometry, we studied the molecular state in the interfacial ar
Resumo:
In this work, the photosynthetic performances of Enteromorpha prolifera thalli collected from the surface and bottom of the sea of Qingdao sea area were studied with chlorophyll fluorescence and oxygraph technology. The samples with the highest photosynthetic activity among their kinds, the floating thalli from the sea surface of the south of the Qingdao Olympic Sailing Center and the sedimentary thalli from the mud surface of the bottom Tuandao bay, were chosen as representatives of surface thalli and bottom thalli, respectively. The results showed that the maximal PSII quantum yield of the floating thalli was significantly lower than the normal level although their photosynthetic activities were relatively high; the photosynthetic potential of the thalli form the mud surface was extremely low. Thus, it is indicated that the floating thalli are seriously stressed by their environment and the thalli from the mud surface are already dead or are dying. On the other hand, the results of the laboratory cultivation showed that the sedimentary thalli cannot regain normal photosynthetic activity even under normal illumination conditions. Thus, the thalli from the mud surface cannot become reproductive source of the alga even if they can reach sea surface again. Therefore, a preliminary conclusion can be reached that, up to mid-July 2008, the environmental conditions of the Qingdao sea area are not suitable for the growth of the alga E. prolifera and for this reason the biomass of E. prolifera, in the area, could be declining.
Resumo:
Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).
Resumo:
Hydrothermal fluid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep seawater hydrothermal activity, containing complex elements, cannot be used to study the seawater's contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig. 4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37 x 10(4) L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.
Resumo:
The technique of balancing cross-sections, an important method for studying the tectonic history of sedimentary basins, has many applications. It enables one to compile charts for petroleum exploration and development, and growth sections of ancient structures can be restored so that the structural growth history can be studied. In order to study tectonic evolution in the Zhuanghai area of the Bohai-Bay basin, we selected two seismic profiles and compiled two structural growth sections. Based on the two balanced cross-sections, the evolution can be divided into four phases: the Triassic-Middle Jurassic phase, Late Jurassic - Cretaceous phase, Palaeogene extension phase, and Late Palaeogene-to-present phase. The whole area was uplifted during the Triassic-Middle Jurassic phase because of intense extrusion stress related to the Indo-China movement. During the Late Jurassic and Early Cretaceous, intense extension occurred in east China, and the whole area rifted, leading to the deposition of a thick sedimentary sequence. In the Late Cretaceous, the area suffered uplift and compression associated with the sinistral strike slip of the Tanlu fault. In the Palaeogene, a rifting basin developed in the area. Finally, it became stable and was placed in its present position by dextral strike-slip motion. In addition, some problems associated with compiling balanced cross-sections are discussed.