257 resultados para MEMBRANE ELEVATION
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
The swelling processes of an annealed poly (vinyl alcohol) membrane, a NaOH-crosslinked poly (vinyl alcohol) membrane, a poly (vinyl alcohol)-N,N'-methylene bisacrylamide irradiation-crosslinked membrane and a poly (vinyl alcohol)/poly(AMcoAANa) blend membrane were investigated. Water was preferentially sorbed by all four membranes. The selective sorption factor alpha(s) and the selective diffusion factor alpha(d) were defined, and were used to characterize the effects of sorption and diffusion on selectivity. The results have shown that preferential sorption has a marked effect on selectivity. The mean diffusion coefficients and pervaporation properties of the four membranes are also discussed.
Resumo:
The porosity and the hydrophobicity of membranes are two essential requirements for membrane distillation (MD) of aqueous solutions. So far, the hydrophobic porous membranes used in MD studies have been prepared from hydrophobic materials. In this work, hydrophilic cellulose acetate and cellulose nitrate membranes were modified into hydrophobic membranes by radiation grafting polymerization and plasma polymerization, and used in MD studies successfully. The results indicated that modified membranes with good performance in MD can be obtained if the modifying conditions are controlled appropriately. Especially plasma polymerization, in which many particular kinds of monomer could be polymerized onto the surface of porous materials, has become an efficient method to prepare hydrophobic porous membrane with high performance from hydrophilic membranes. It will stimulate the development and practical application of MD.
Resumo:
In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.
Resumo:
The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.
Resumo:
Membrane distillation is a new membrane separation process which has been developed in the last few years. When a piece of microporous hydrophobic membrane separates two kinds of aqueous solutions different in temperature, the solutions cannot transport through the pores of membrane in any directions because of the hydrophobicity of membrane. However, vapor can readily penetrate through the
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
From the perspective of a polymer solution, the rheological properties of the popular polyethersulfone (PES)/N-methyl-2-pyrrolidone (NMP)/nonsolvent (NS) membrane-forming system were investigated thoroughly with a controlled stress rheometer (HAAKE RS75, Germany). The scope of the study included measurements of the controlled-stress flow curve, creep recovery, and dynamic oscillation. H2O, 1-butanol, ethylene glycol, and diethylene glycol were used as NS additives. The effects of the polymer concentration and the quality of the solvent mixture, as characterized by the approaching ratio, on the rheological behavior of the dopes were studied. Up to 38 wt % PES and extremely adjacent to the phase separation (i.e., the approaching ratio of the dope was 0.95), the viscous property dominated all the dopes, which behaved as Newtonian fluids. Moreover, all the membrane-forming dopes investigated were in the crossover regime in the semidilute region, in which the chains were overlapping but unentangled. (C) 2001 John Wiley & Sons, Inc.