154 resultados para ION TRANSFER KINETICS
Resumo:
Emission of europium(II) and europium(III) have been observed in SrMgF4 xEu, yTb phosphors winch are synthesized in Ar flow. The valence state of En is influenced by terbium, It is noted that the intensities of the ESR peaks corresponding to Eu2+ are increased when terbium ion is codopech this can be explained by electron transfer mechanism which is Eu3++Tb3+-->Eu2++Tb4+. And its equilibrium constant is calculated.
Resumo:
At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.
Resumo:
The hydrolysis kinetics of atropine sulphate has been investigated by cyclic voltammetry at the water/nitrobenzene interface. The transfer process is diffusion controlled and the transfer species is a 1:1 proton-atropine complex. Two main factors, pH and temperature, which have notable effects on the hydrolysis rate, are illustrated. The most suitable pH for atropine to be preserved in aqueous solution and related parameters were estimated.
The ion-molecule reaction after multiphoton ionization in the binary cluster of ammonia and methanol
Resumo:
The binary cluster (CH3OH)(n)(NH3)(m) was studied by using a multiphoton ionization time-of-flight mass spectrometer (MPI-TOFMS). The measured two series of protonated cluster ions: (CH3OH)(n)H+ and (CH3OH)(n)NH4+ (1 less than or equal to n less than or equal to 14) were attributed to the ion-molecule reaction in the binary cluster ions. The mixed cluster of CH3OD with ammonia was also studied. The results implied that the proton transfer probability from the OD group was larger than that from CH3 group. The ab initio calculation of the binary cluster was carried out at the HF/STO-3G and MP2/6-31G** levels of theory, and indicated that the latter process of the proton transfer must overcome a barrier of similar to 29 kcal/mol. (C) 1999 Elsevier Science B.V. All rights reserved.