342 resultados para Heavy ion
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.
Enhanced biological effect induced by a radioactive C-9-ion beam at the depths around its Bragg peak
Resumo:
To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.
Resumo:
For radiation protection purposes, the neutron dose in carbon ion radiation therapy at the HIRFL (Heavy Ion Research Facility in Lanzhou) was investigated. The neutron dose from primary C-12 ions with a specific energy of 100 MeV/u delivered from SSC was roughly measured with a standard Anderson-Broun rem-meter using a polyethylene target at various distances. The result shows that a maximum neutron dose contribution of 19 mSv in a typically surface tumor treatment was obtained, which is less than 1% of the planed heavy ion dose and is in reasonable agreement with other reports. Also the gamma-ray dose was measured in this experiment using a thermo luminescent detector.
Resumo:
Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e mu A of Xe37+, 1 e mu A of Xe43+, and 0.16 e mu A of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e mu A of Bi31+, 22 e mu A of Bi41+, and 1.5 e mu A of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.
New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)
Resumo:
Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.
Resumo:
Ni/SiO2 interface were irradiated at room temperature with 308 MeV Xe ions to 1×1012,5×1012 Xe/cm2 and 853 MeV Pb ions to 5×1011 Pb/cm2,respectively.These samples were analyzed using Rutherford Backscattering Spectrometry(RBS) and X-ray diffraction spectroscopy(XRD),from which the intermixing and phase change were investigated.The obtained results show that both Xe-and Pb-ions could induce diffusion of Ni atoms to SiO2 substrates and result in intermixing of Ni with SiO2.Furthermore,1.0×1012 Xe/cm2 irradiat...中文摘要:在室温下用308 MeV的Xe离子和853 MeV的Pb离子辐照Ni/SiO2样品,用卢瑟福背散射和X射线衍射技术对样品进行了分析。通过分析Ni/SiO2样品中元素成分分布和结构随离子辐照剂量和电子能损的变化,探索了离子辐照在Ni/SiO2样品中引起的界面原子混合与结构相变现象。实验结果显示,Xe和Pb离子辐照均能引起明显的Ni原子向SiO2基体的扩散并导致界面附近Ni,Si和O原子的混合。实验观测到低剂量Xe离子辐照可产生NiSi2相,而高剂量Xe离子辐照则导致了Ni3Si和NiO相的形成。根据热峰模型,Ni原子的扩散和新相的形成可能由沿离子入射路径强电子激发引起的瞬间热峰过程驱动。
Resumo:
Low-activation Ferritic/Martensitic steels are a kind of important structural materials candidate to the application in advanced nuclear energy systems.Possible degradation of properties and even failure in the condition of high-temperature and high helium production due to energetic neutron irradiation in a fusion reactor is a major concern with the application of this kind of materials.In the present work microstructural evolution in a 9Cr Ferritic/Martensitic steel(T92B) irradiated with 122 MeV 20Ne ions...中文摘要:低活化的铁素体/马氏体钢是先进核能装置(如聚变堆)的重要候选结构材料。在聚变堆实际工作环境下,由于高温和高氦产生率引起的材料失效是这类材料面临的一个重要问题。本项研究以兰州重离子加速器(HIRFL)提供的中能惰性气体离子束(20Ne,122 MeV)作为模拟辐照条件,借助透射电子显微镜,研究了一种低活化的9Cr铁素体/马氏体钢(T92B)组织结构的变化和辐照肿胀。实验结果表明,高温下当材料中晶格原子的撞出损伤和惰性气体原子沉积浓度超过一定限值时,材料内部形成高浓度的空洞,并且空洞肿胀率显著依赖于辐照温度和剂量;在马氏体板条界面及其它晶界处空洞趋于优先形成,并且在晶界交汇处呈加速生长。基于氦泡的形核生长与空洞肿胀的经典模型探讨了在不同辐照条件(He离子、Ne离子、Fe/He离子双束、快中子、Ni离子)下铁素体/马氏体钢中肿胀率数据的关联。
Resumo:
This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR).To ensure the specified accuracy of the current,the hysteresis loop control strategy was adopted,and tracking error was constrained in the specified tolerance.One prototype was designed and installed.And the simulation results and test results were listed in the paper.The results sho...中文摘要:阐述了用于兰州重离子深层治癌装置的扫描电源的技术指标和工作原理,为保证该电源输出电流的精度,采用滞环控制策略,将跟踪误差限制在设计要求的误差范围内。研制了1台扫描电源样机,并给出了电路仿真和测试结果。测试结果显示各项指标均达到了设计要求,表明所选电路结构和滞环控制方案是切实可行的。
Resumo:
Purpose The aim of this study is to evaluate the eVect of carbon-beam irradiation on adenovirus-mediated p53 transfer in human cervix adenocarcinoma.Materials and methods The HeLa cells pre-exposed to carbon-beam or -ray, were infected with replication-deficient adenovirus recombinant vectors, containing human wild-type p53 (AdCMV-p53) and green Xuorescent protein (GFP) (AdCMV–GFP), respectively. The GFP transfer and p53 expression were detected by Xow cytometric analysis.Results The GFP transfer frequency in C-beam with AdCMV-GFP groups was 38–50% more than that inγ-ray with AdCMV–GFP groups. The percentage of p53 positive cells in the C-beam with AdCMV–p53 groups was 34–55.6% more than that in γ-ray with AdCMV-p53 groups (p < 0.05), suggesting that subclinical-dose C-beam irradiation could signiWcantly promote exogenous p53 transfer and p53 expression, and extend the duration of p53 expression in the HeLa cells. The expression of p21 increased with p53 expression in HeLa cells. The survival fractions for the 0.5–1.0 Gy C-beam with AdCMV-p53 groups were 38–43% less than those for the isodose γ-ray with AdCMV-p53 groups, and 31–40% less than those for the C-beam only groups (p <0.05).Conclusions The subclinical-dose C-beam irradiation could signiWcantly promote the transfer and expression of exogenous p53, extend the duration of p53 expression, and enhance the suppression of p53 on cervix adenocarcinoma cells.
Resumo:
Basic algorithms of biological effective dose optimization and dose distribution on CT image for the heavy ion therapy project at the Institute of Modern Physics(IMP),Chinese Academy of Sciences(CAS) are reported in this paper.Firstly,biological effective dose optimization is conducted in water.According to the relationship between CT number and water equivalent path length,an integral algorithm is used to calculate the average dose within a pixel and then the dose distribution in tissue is derived.Secondly...中文文摘:针对深部肿瘤重离子治疗临床试验的需求,首先在水介质中进行生物有效剂量的优化计算,然后根据CT图像中像素CT值与水等效长度转换系数之间的关系,结合水中的深度剂量分布曲线对每个像素进行积分得到CT图像上的生物有效剂量分布。同时介绍了基于被动式束流配送系统适形照射时的剂量确定方式,并提出二维适形放疗也应使用分层照射方式以适应治疗时的不同要求。这些方法适合目前及今后在IMP进行的重离子治癌临床试验研究中治疗计划系统的需要。
Resumo:
One of the major tasks of studying isospin physics via heavy-ion collisions with neutron-rich nuclei, is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, i.e., the density dependence of nuclear symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of nuclear symmetry energy has been the main focus of the intermediate。中文摘要:同位旋物理的主要任务之一是通过放射性核束引起的核反应来探索介质中有效核子 核子相互作用的同位旋依赖性,尤其是同位旋相关的核物质状态方程,即,密度依赖的核物质对称能。由于对称能,尤其是其高密行为,对核物理学和天体物理学具有重要意义,密度依赖的对称能在过去10年一直是中能重离子物理研究领域的主要焦点之一。近年来,低密对称能的研究已经取得了重要进展,而对称能的高密行为仍然很不确定。在理论方面,人们提出了许多对高密对称能敏感的观测量。实验方面,关于对称能高密行为研究的实验计划已经展开,世界各地正在建造的放射性核束装置为对称能的高密行为研究提供了新的机遇。基于I BUU输运模型综述了研究对称能高密行为的一些敏感观测量及其最新进展,以及所面临的挑战与机遇。
Resumo:
HIRFL-CSR, a new heavy ion cooler-storage-ring system at IMP, had been in commissioning since the beginning of 2006. In the two years of 2006 and 2007 the CSR commissioning was finished, including the stripping injection (STI), electron-cooling with hollow electron beam, C-beam stacking with the combination of STI and e-cooling, the wide energy-range synchrotron ramping from 7 MeV/u to 1000 MeV/u by changing the RF harmonic-number at mid-energy, the multiple multi-turn injection (MMI), the beam accumulation with MMI and e-cooling for heavy-ion beams of Ar, Kr and Xe, the fast extraction from CSRm and single-turn injection to CSRe, beam stacking in CSRe and the RIBs mass-spectrometer test with the isochronous mode in CSRe by using the time-of-flight method.
Resumo:
A new generation electron cooler has started operation in the heavy ion synchrotron CSRm which is used to increase the intensity of heavy ions. Transverse cooling of the ion beam after horizontal multi-turn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. In given accumulation time interval of 10 seconds, 108particles have been accumulated and accelerated to the final energy. The momentum spread after accumulation and acceleration in the 10−4 range has been demonstrated in six species of ion beams. Primary measurements of accumulation process varying with electron energy,electron beam current, electron beam profile, expansion factor and injection interval have been performed.The lifetimes of ion beams in the presence of electron beams were roughly measured with the help of DCCT signal.
Resumo:
In commissioning the HIRFL-CSR (Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou),with the spectrum analyzer monitoring the beams on-line, we measured many parameters of the beam status for improving quality of the heavy ion beams. In this paper, the sudden change of the beam center frequency is analyzed.A theoretical analysis is done mainly on instabilities of the electron voltage and the neutralization factor. Simulations were made for the problem. According to the simulation result, we can conclude that it is the instability of neutralization factor that caused the problem. 中文摘要:HIRFL-CSR调试过程中,利用频谱分析仪实时监测束流,根据其上测的数据进行相关参数调整,改善束流的品质。本文对分析仪上观测到的现象一束流的中心频率发生突变进行了研究,主要就电子束的高压不稳定性和中性化因子的突变做了理论分析,并进行了相关的模拟计算 ,根据模拟结果初步断定该现象的出现由电子束的中性化因子导致。
Resumo:
In order to investigate the effect of carbon ion irradiation on apoptosis and Bax/Bcl-2 expression inhuman tongue carcinoma cells, exponentially growing human tongue carcinoma cells (Tb) cultured in vitro were irradiated with 0, 0.5, 1.0, 2.0 or 4.0 Gy of 12C6+ ions respectively. Survival rate of irradiated cells at various doses were measured by MTT assay. The nucleus changes of apoptosis and necrosis of cells stained by Hochest/PI were observed through fluorescence microscope. The cell cycle changes were detected by flow cytometry (FCM). The expressions of Bax and Bcl-2 were detected by Western blot analysis. The results show that the viability of Tb cells decreases gradually with increment of irradiation doses of carbon ions. The proportions of apoptosis cells in the irradiated groups are significantly higher than those in the control group. There is a positive correlation between irradiation doses and retardation strength in G2 /M phase at 24 h after irradiation (P<0.05). And the expressions of Bax and bcl-2 are significantly up-regulated and down-regulated respectively by 12C6+ ion irradiation. It can be concluded from above that cell apoptosis induced by heavy ion with high-LET may be mediated through the Bax/Bcl-2 expression pathway. 探讨重离子辐照对人舌鳞癌Tb细胞的凋亡及Bax/Bcl-2蛋白表达的影响。采用0、0.5、1.0、2.0、4.0 Gy重离子束辐照人舌鳞癌 Tb 细胞,应用 MTT 法检测细胞存活,流式细胞技术检测细胞周期变化,Hoechst33258/PI 复染法观察 Tb 细胞凋亡形态,并采用 Western-blot 法检测 Bax/Bcl-2 蛋白表达情况。结果发现,Tb细胞经12C6+离子束辐照后存活率显著下降,呈剂量依赖性的生长抑制;Tb细胞呈现蓝色荧光浓集成团的凋亡形态,且凋亡比例随辐照剂量增加;G2/M 期细胞百分数随照射剂量增加而增加(P<0.05) 。Western-blot结果显示 Bax 蛋白表达水平随辐照剂量逐渐上升,但在 4 Gy 组其表达不再增高,Bcl-2 蛋白在 1.0、2.0、4.0 Gy组随剂量增大呈下降趋势。以上结果提示重离子束辐照对 Tb 细胞有抑制作用,Bax/Bcl-2 蛋白表达是重离子治癌的机制之一。