317 resultados para HPLC-UV-DAD
Resumo:
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.
Resumo:
Isolated transition metal ions/oxides in molecular sieves and on surfaces are a class of active sites for selective oxidation of hydrocarbons. Identifying the active sites and their coordination structure is vital to understanding their essential role played in catalysis and designing and synthesizing more active and selective catalysts. The isolated transition metal ions in the framework of molecular sieves (e.g., TS-1, Fe-ZSM-5, and V-MCM-41) or on the surface of oxides (e.g., MoO3/Al2O3 and TiO2/SiO2) were successfully identified by UV resonance Raman spectroscopy. The charge transfer transitions between the transition metal ions and the oxygen anions are excited by a UV laser and consequently the UV resonance Raman effect greatly enhances the Raman signals of the isolated transition metal ions. The local coordination of these ions in the rigid framework of molecular sieves or in the relatively flexible structure on the surface can also be differentiated by the shifts of the resonance Raman bands. The relative concentration of the isolated transition metal ion/oxides could be estimated by the intensity ratio of Raman bands. This study demonstrates that the UV resonance Raman spectroscopy is a general technique that can be widely applied to the in-situ characterization of catalyst synthesis and catalytic reactions. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.
Resumo:
A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.
Resumo:
Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A novel method for the determination of N-acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA) has been developed using high-performance capillary electrophoresis with UV detection at 195 nm, without pre or post-column derivatisation. The acids were separated in a 50-cm, fused-silica capillary (50 mu m i.d, 45.5-cm effective length) with Na2B4O7-Na2HPO4 buffer. The detection limit for NANA is a concentration of 9.6 x 10(-6) M or, in terms of mass: 3.879 x 10(-14) mol (39 fmol). This method is applicable to determination of NANA in normal human serum. The results were also compared with those of the colorimetrie method.
Resumo:
Modified nucleosides derived predominantly from transfer ribonucleic acid (tRNA) have been studied as possible tumor markers. In this paper a reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been applied to study 15 normal and modified nucleosides in serum. The nucleoside levels in normal human serum were established, and the concentrations of 15 nucleosides in serum from 19 cancer patients were determined, it was found that the concentrations of modified nucleosides were significantly higher in patient sera. Based on 15 nucleoside concentrations in serum, factor analysis could classify correctly 90% of cancer patients from the normal humans Further work showed that urine was slightly better than serum when determining nucleosides as biological marker candidates. More work is ongoing to determine the clinical usefulness of modified nucleosides as tumor markers.
Resumo:
Modified nucleosides, formed post-transcriptionally in RNA by a number of modification enzymes, are excreted in abnormal levels in the urine of patients with malignant tumors. To test their usefulness as tumor markers, and to compare them with the conventional tumor markers, a reversed-phase high-performance liquid chromatographic (RP-HPLC) method and a factor analysis method have been used to study the excretion pattern of nucleosides of breast cancer patients. A clear cut differentiation of the breast cancer group and the healthy individuals in two clusters without overlapping was obtained. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Natural humic lake water and aqueous solutions of humic substances were treated with ultraviolet (UV) radiation (λ = 254 nm). The effects on the dissolved organic carbon content (DOC) and the absorbance at 254 nm (Abs254) and 460 nm (Abs460) were monitored and the identity and concentrations of gas chromatographable organic degradation products were determined. The DOC content and the (Abs254) of the humic solutions decreased continuously with increasing UV-dose. Several aromatic and aliphatic degradation products were identified and roughly quantified The concentrations of aromatic hydroxy carboxylic acids and hydroxy aldehydes increased when relatively low UV-doses were used, but declined following further irradiation. The concentrations of aliphatic dibasic acids increased over the full range of UV-doses