230 resultados para Genetic demography
Resumo:
The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the similar to 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428 bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst = 0.70, P < 0.00001; Nm = 0.21) and Minjiang River (Fst = 0.73, P < 0.00001; Nm = 0.18) groups, while low Fst value (Fst = 0.018, P > 0.05) and high rate of migration (Nm = 28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (<= 0.12) and high Nm values (>3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst >= 0.59; Nm < 1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. (C) 2009 Published by Elsevier B.V.
Resumo:
Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.
Resumo:
We determined the genetic diversity of geographic populations from three spawning grounds (Nyang River, Lhasa River, Shetongmon Reach of Yarlung Zangbo River) of Glyptosternum maculatum with amplified fragment length polymorphism (AFLP) markers. Five primer combinations detected 332 products, 51 of them (15.4%) were polymorphic in at least one population. The Shetongmon population was found to be the richest in genetic diversity as was indicated by the percentage of polymorphic loci and heterozygosity, followed by the Nyang population and the Lhasa population. The pair-wise genetic distance between populations were all very close, ranging from 0.0015 to 0.0042 with an average of 0.0024. The genetic distance was not proportional to the geographic distance. The analysis of molecular variance demonstrated that all variation occurred within populations. The average estimated fixation index (F (st)) of three populations across all polymorphic loci was -0.0184, indicating the absence of genetic differences among the three sampled populations. The differentiation among populations was not significant, and population structure was weak. Our observations will help identify the genetic relationship among populations as the first approach to understand the genetic diversity of Glyptosternum maculatum.
Resumo:
National Natural Science Foundation of China (NSFC) [2007CB411600, 30530120]
Resumo:
Genetic diversity of the plankton community in Lake Xiliang was depicted by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Seventy-seven bands (33 of 16S rDNA and 44 of 18S rDNA) were detected, sixty-two planktonic taxa were identified in six sample stations in November 2007. The most common taxa were Ceratium hirundinella, Bdelloidea, Keratella cochlearis, Polyarthra trigla, and copepod nauplii. Based on environmental factors, taxonomic composition, and PCR-DGGE fingerprinting, unweighted pair-group method using arithmetic averages clustering and principal components analysis were used to analyze habitat similarities. There was distinct spatial heterogeneity in Lake Xiliang, and the genetic diversity of the plankton community was closely related to taxonomic composition and environmental factors.
Resumo:
Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fin't4draco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using I I intersirnple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0. 1676). However, the connected and unconnected lakes did not Cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain Population structure.
Resumo:
Three groups of gynogenetic diploid bighead carp were successfully obtained by means of artificial gynogenesis. The activation rates of gynogenesis varied from 75.9% to 98.8%, and the frequency of spontaneous diploidization was around 0.4%. Over 2000 normally gynogenetic diploid fry were obtained in three gynogenetic groups. The haploid karyotype consisted of nine metacentric, 12 submetacentric, three subtelocentric chromosomes and 45 arms. The chromosome number was 48 from gynogenetic diploid. The results showed that the genetic material of offspring was maternal. The aneuploid hybrid embryos of bighead carp and Xingguo red common carp with chromosome numbers ranging from 28 to 73 did not survive post hatch, likely the result of incompatibility between the nucleus and the cytoplasm of two parents. Sixty RAPD primers from three groups were used for total DNA amplification of gynogenetic offspring, maternal and 'paternal' fish. A total of 451 bands were amplified from three kinds of samples above. From maternal bighead carp, 256 bands were amplified; however, there were 251 shared bands between maternal and gynogenetic bighead carp. From artificial gynogenetic offspring, two 'paternal' DNA segments without an expression function were found. An UPGMA tree showed that gynogenetic offspring were closely clustered and the genetic identity among them was very high (0.956).
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
Blood smears and purified trypanosome from freshwater fishes yellow catfish (Pseudobagras fulvidraco) and common carp (Cyprinus carpio) captured from Niushan Lake, Hubei Province were examined to determine whether all of their trypanosomes were Trypanosoma pseudobagri, a species of supposed host specificity and widespread existence across China. Trypanosomes occurred in 16/16 blood smears, and morphometric character analysis of trypanosomes from these smears showed that there were three morphospecies, Trypanosoma sp Carpio, T. sp Pseudobagri, and T. sp. 18S rDNA sequences of trypanosomes from 16 samples revealed three genetic groups among these fish trypanosomes. Group 1 was from C. carpio containing T. sp Carpio; groups 2 and 3 were from P. fulvidraco containing T. sp Pseudobagri and T. sp, respectively. The high similarity of morphometric characters and 18S rDNA sequences showed that T. sp Carpio and T. siniperca probably were the same species. T. sp Pseudobagri was the first occurrence in China. Sequence comparison showed that T. sp Pseudobagri sequence was most similar to that of clone Marv, whereas T. sp sequence differ from those of T. sp Carpio and T. sp Pseudobagri by 5.4 and 5.8%, respectively, and tentatively identified as T. pseudobagri. It was concluded that three species of trypanosomes, at least three genotypes occur in Niushan Lake fishes, and P. fulvidraco in this region appear to contain both types, although the identification of T. pseudobagri remains a problem.
Resumo:
Redfin culter (Culter erythropterus) is a small lethic freshwater fish and widely distributed in the adjacent lakes of the Yangtze River of China. Five microsatellite loci were applied to investigate the genetic variation and population structure of redfin culter from seven lakes in the middle-and-lower reaches of the Yangtze River. The gene diversity was high among the populations (H > 0.9), the average number of alleles among seven populations was low with a range from 2.00 to 3.87. The mean observed (H-O) and expected (H-E) heterozygosity ranged from 0.111 to 0.419 and from 0.162 to 0.750, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found in 50% of the total locus-population combination tests in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percentage of variance among and within these populations were 6.18 and 93.82, respectively. The Fst values (0.062, P < 0.001) among studied populations indicated that there were significant genetic differentiations among redfin culture populations from the scattered lakes with different connections to the Yangtze River. These results are useful for the evaluation and conservation of small freshwater fishes. The factors that may be involved in low intra-population polymorphism and the pattern of the population genetic structure of redfin culter from the Yangtze River were discussed.
Resumo:
Genetic linkage maps were constructed for large yellow croaker Pseudosciaena crocea (Richardson, 1846) using AFLP and microsatellite markers in an F-1 family. Five hundred and twenty-three AFLP markers and 36 microsatellites were genotyped in the parents and 94 F-1 progeny. Among these, 362 AFLP markers and 13 SSR markers followed the 1:1 Mendelian segregation ratio (P > 0.05). The female genetic map contained 181 AFLP and 7 microsatellite markers forming 24 linkage groups spanning 2959.1 cM, while the male map consisted of 153 AFLP and 8 microsatellite markers in 23 linkage groups covering 2205.7 cM. One sex linked marker was mapped to the male map and co-segregated with the AFLP marker agacta355, suggesting an XY-male determination mechanism and this may be useful in the breeding of monosex populations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Twenty strains of Microcystis Kutz were isolated from different freshwater bodies in China to analyze the diversity, geographical distribution and toxin profiles. Based on whole-cell polymerase chain reaction of cpcBA-IGS nucleotide sequence, the derived neighbor-joining (NJ) and maximum parsimony (MP) trees indicate that these strains of Microcystis can be divided into four clusters. The strains from south, middle and north region of China formed distinct lineages, suggesting high diversity and a geographical distribution from south to north locations. Moreover, the results being indicating high variable genotypes of the strains of the Microcystis strains from the same lake show that there is high diversity of Microcystis within a water bloom population. Comparing the results of the present study with those reported for compared with 43 strains of Microcystis from other locations, also reveals Chinese strains have high similarity with those from regions in the North Hemispherical. This suggests that the Microcystis strains in the world might have a geographical distribution. Analysis of 30 strains using the primers MCF/TER and TOX2P/TOX2M showed that there was no correlation between the gene of cpcBA-IGS and the presence of mcy. Toxic strains were founded to be predominant in different water bodies throughout China.
Resumo:
Over the past two decades, molecular techniques have been widely used in ecological study and molecular ecology has been one of the most important branches of ecology. Meanwhile, genetic fingerprinting analyses have significantly enhanced our knowledge of the diversity and evolutionary relations of the planktonic organisms. Compared with conventional approaches in ecological study (e. g. morphological classification), genetic fingerprinting techniques are simpler and much more effective. This review provides an overview of the principles, advantages and limitations of the commonly used DNA fingerprinting techniques in plankton research. The aim of this overview is to assess where we have been, where we are now and what the future holds for solving aquatic ecological problems with molecular-level information.
Resumo:
Although the peritrichous ciliate Carchesium polypinum is common in freshwater, its population genetic structure is largely unknown. We used inter-simple sequence repeat (ISSR) fingerprinting to analyze the genetic structure of 48 different isolates of the species from four lakes in Wuhan, central China. Using eight polymorphic primers, 81 discernible DNA fragments were detected, among which 76 (93.83%) were polymorphic, indicating high genetic diversity at the isolate level. Further, Nei's gene diversity (h) and Shannon's Information index (I) between the different isolates both revealed a remarkable genetic diversity, higher than previously indicated by their morphology. At the same time, substantial gene flow was found. So the main factors responsible for the high level of diversity within populations are probably due to conjugation (sexual reproduction) and wide distribution of swarmers. Analysis of molecular variance (AMOVA) showed that there was low genetic differentiation among the four populations probably due to common ancestry and flooding events. The cluster analysis and principal component analysis (PCA) suggested that genotypes isolated from the same lake displayed a higher genetic similarity than those from different lakes. Both analyses separated C. polypinum isolates into subgroups according to the geographical locations. However, there is only a weak positive correlation between the genetic distance and geographical distance, suggesting a minor effect of geographical distance on the distribution of genetic diversity between populations of C. polypinum at the local level. In conclusion, our studies clearly demonstrated that a single morphospecies may harbor high levels of genetic diversity, and that the degree of resolution offered by morphology as a marker for measuring distribution patterns of genetically distinct entities is too low.
Resumo:
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H (O)) and expected (H (E)) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.