176 resultados para EMBEDDED CLUSTERS
Resumo:
Through the reaction of Co-2(CO)(8) with four thiuram [R2NC(S)S](2), four new sulfur-capped trinuclear cobalt carbonyl clusters Co-3 (CO)(7) (mu(3)-S) (mu, eta(2)-S* C* NR2) ( I : R = Me; I : R = Et; II : R = i-Pr; IV : NR= -N [GRAPHICS] were prepared and characterized by elementary analysis, IR,H-1 NMR and MS spectroscopy. The crystal structure of the cluster Co-3(CO)(7)(mu(3)-S)[mu, eta(2)-S*C*N (i-Pr)(2)]( III) was determined by X-ray single crystal diffraction method. The crystal of m is monoclinic, belonging to space group P2(1)/n, and the cell parameters are as follows: a = 1, 145 2(2) nm, b = 1. 502 8(3) nm, c = 1, 214 4(2) nmj alpha = 90 degrees, beta = 92, 15(3)degrees, gamma = 90 degrees; V = 2. 088 5(7) nm(3) , Z = 4, F (000) = 1 096, D-c = 1. 747 mg . m(-3), mu = 2. 588 mm(-1), R=0. 040 7, R-w=0. 062 4, The structural analysis shows that cluster II has a pyrimidal Co3S framework and contains a heterocylic bridging bidentate ligand [mu, eta(2)-S* C* N (i-Pr)(2)] linked to the Co2 and Co3 atoms of the cluster by a cobalt-carbon and a cobalt-sulfur bond respectively.
Resumo:
C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP
Resumo:
LaC2 (with doublet and quartet states) and LaC2+ (with singlet and triplet states) cluster have been studied by using the B3LYP (Becke three-parameter/Lee-Yang-Parr) density functional method and the HF (Hartree-Fock) method with LANLIDZ basis set. For each cluster, four possible isomers in C-2v, C-s, C-proportional to v and D-proportional to h symmetries have been investigated. The results indicate that structures in C-s symmetry are local minima in all cases and, in most cases (particularly for high spin states), our initial guess in C-s symmetry converges to structures in C-2v symmetry. For the isomers in C-2v, C-proportional to v and D-proportional to h symmetries, local minima were found to be dependent on the method and spin state. The two clusters may also exist as linear chains. The ordering of the binding energies for the isomers in all spin states is C-s similar to C-2v < C-proportional to v < D-proportional to h. The ionization potential of LaC2 is reported as well. (C) 1998 Elsevier Science B.V.
Resumo:
LaC3n+ (n = 0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional method. The basis set is Dunning/ Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C-2 upsilon symmetry, the other two are Linear chains with C-infinity upsilon symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C-2 upsilon symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. (C) 1998 John Wiley & Sons, Inc.
Resumo:
用密度泛含方法研究了LaC5n(n=-1,0,+1)分子簇的结构和稳定性及振动光谱,对这个六原子体系提出了三种可能构型,点群结构为C2v对称性.第一个构型为La接在弯曲的C5链上,第二个是La通过二个键与C5环相连第三个是La通过一个键与C5环相连;结果表明,第一个构型即当La接在弯曲的C5链上时能量最低.振动光谱分析指出,当n=-1时,第二个构型为局域极小值;当n=+1时,第一个和第二个构型为局域极小值;对n=0,局域极小值没有找到.
Resumo:
用密度泛函方法研究了LaCn及La2Cn(n=-1,0,+1)分子簇的结构和稳定性.对La2Cn体系,提出了两种可能构型,其中一种具有C2v对称性,另一种具有D∞h对称性.计算结果表明,对La2Cn,当n=+1,-1时,线状结构最稳定,并且在n=+1时,C2v结构极不稳定有收敛向线状结构的趋势.而当n=0时,C2v结构最稳定.最后还计算了LaC和La2C分子簇的电子亲和势和离化能.
Resumo:
LaCn+ (n = 2-8) have been studied using Hartree-Fock (HF) and B3LYP density functional method. The results indicated that at both levels, isomers with C-2v, C-s symmetry for n = 2, and edge insertion isomer for n = 4, 6, 8, as well as edge binding isomer for n = 3, 5, 7 were found as ground states. This is in good agreement with experimental results. The exceptional case is for n = 6 at B3LYP level, in which edge insertion and edge binding isomers were computed to be near isoenergetic. (C) 1997 Elsevier Science B.V.
Resumo:
LaC2+, LaC22+, LaC3 and LaC3- clusters have been studied using B3LYP density functional method. Four isomers with C-2v, C-s, C-infinity v and D-infinity h symmetry were presented for LaC2+ and LaC22+. Meanwhile, two spin states, namely, singlet and triplet for LaC2+, doublet and quartet for LaC22+ were considered The results indicated that ring isomers with C-2v and C-s symmetry are the most stable for La-C2(+) at both spin states and for LaC22+ at quartet state. Whereas for LaC22+ at doublet state, linear isomer with C-infinity v symmetry is energetically favored, For LaC3 and LaC3- clusters,, three isomers have been presented for each cluster, that is, two ring isomers with C-2v symmetry ( in one of them, La forms two single bonds with two carbons, and in another, La forms a double bond with carbon), and one linear isomer with C-infinity v symmetry. The results revealed that the ring isomer in which La forms two single bonds with carbons is the lowest in energy.
Resumo:
Multiple films of copper phthalocyanine derivative embedded SnO2 ultrafine particles were studied, The results indicated that there is interaction between CuPc and SnO2, and structure of CuPc is destroyed to some extent. Gas sensitivity measurements show that conductance of LB films after embedding increases about one order of magnitude, stability of gas-sensing also increases.
Resumo:
The energies and geometries of C-9 and LaC9+ clusters were calculated at HF, MP2 and DFT levels. For C-9, all theoretical levels show that the linear chain is the most stable structure. For LaC9+, two isomers were considered. In the first case La has two single bonds (A), while it forms a double bond in the second (B). Our results showed that in HF calculation, B is marginally more stable than A, while for MP2 and DFT, A is favored. Our results also revealed that there is not enough space for C-9 ring to accommodate lanthanum. Our conclusion agrees well with experiment.
Resumo:
We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf. The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface. At this point, the mixed layer depth also was deepened along the front, and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity. Thus, submesoscale stirring/mixing is important for tracers, such as temperature, salinity, nutrients, dissolved organic, and inorganic carbon. This result may have implication for climate and biogeochemical investigations.