414 resultados para ELECTRODE POSITION
Resumo:
In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.
Resumo:
The electrochemical behavior of pyridine distribution at the water/1,2-dichloroethane interface with variable phase volume ratios (r=V-0/V-W) was investigated by cyclic voltammetry. The system was composed of an aqueous droplet supported on a Ag/AgCl disk electrode covered with an organic solution or an organic droplet supported on a Ag/AgTPBCl disk electrode covered with an aqueous solution. In this way, a conventional three-electrode potentiostat can be used to study an ionizable compound transfer process at a liquid/liquid interface with a wide range of phase volume ratios (from 0.0004 to 1 and from 1 to 2500). Using this special cell we designed, only very small volumes of both phase were needed for r equal to unity, which is very useful for the investigation of the distribution of ionizable species at a biphasic system when the available amount of species is limited. The ionic partition diagrams were obtained for different phase volume ratios.
Resumo:
The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphenedyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = V-o/V-w) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ionizable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard partition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The obtained results have been summarized in ionic partition diagrams, which are a useful tool for predicting and interpreting the transfer mechanisms of ionizable drugs at the liquid/liquid interfaces and biological membranes.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
This paper describes an indium tin oxide (ITO) electrode-based Ru(bPY)(3)(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 muM (S/N = 3) and a linear range from 5 to 600 muM.
Resumo:
In this paper, we report the construction and application of a sol-gel derived carbon composite electrode (CCE) as an amperometric detector for capillary electrophoresis. The electrochemical properties were characterized and compared with those of conventional carbon fiber and carbon paste electrode (CPE). Experimental results show that peak-to-peak noise of CCE was about 20% of CPE and electrode capacitance was comparatively low. When applied to the detection of dopamine and epinephrine, the optimal detection potential for CCE was 0.1 V lower than CPE under the same separation conditions; CCE with diameter of 75 and 100 mum could achieve a low detection limit of 3.10(-8) and 6.10(-8) M for the detection of epinephrine, which approaching that of the 33-mum diameter carbon fiber electrode. Also, the linearity for epinephrine at CCE was more than two orders of magnitude, which was slightly wider than that of carbon fiber electrode. Applications to real sample analysis were tested by the determination of betahistine dihydrochloride in tablets and human urine. Using CCE with diameter less than or equal to100 mum as an amperometric detector after capillary electrophoresis separation, a low detection limit and a wide linear range combined with excellent reproducibility were obtained. This CCE possesses of many advantages, namely, convenience, ease of fabrication, low cost and high stability.
Resumo:
The influence of K7Fe3+P2W17O62H2 on l-alpha-phosphatidylcholine/cholesterol bilayer lipid membrane on Pt electrode was studied by voltammetry and AC impedance spectroscopy. The interaction of the polyoxometalates with the BLM can promote the access of Ru(NH3)(6)(3+) and [Fe(CN)(6)](3-/4-) to the electrode surface. It was found that some kind of pores had been formed on the BLM by AFM. The phenomenon is attributed to the interaction of K7Fe3+P2W17O62H2 with phosphatidylcholine phosphate groups located in its outer leaflet. Experimental results are helpful to understand the biological activity of the polyoxometalates in vivo.
Resumo:
For improving the electrode characteristics of the Zr-based AB(2)-type alloy, a new kind of composite hydrogen Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2)(represented as AB(2)) with a rare storage alloy was successfully prepared by ball-milling I earth-based AB(5)-type alloy (represented as AB(5)) which worked as a surface modifier. Effects of ball-milling on the electrode characteristics and microstructure of Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2) alloy and mixtures of AB(2) with AB(5) alloy were investigated. After milling the mixed AB(2) and AB(5) powders (9: 1 in mass ratio) for 10min, XRD and SEM analysis showed that AB(2) and AB(5) maintained their original crystalline states, respectively, some AB(5) particles were adhered onto the surface of AB(2), and some fresh surfaces were formed. It was found that the activation cycles of AB(2)-AB(5) composite alloy was shortened from 14 to 7 and the maximum discharge capacity was increased from 330mAh . g(-1) to 347mAh . g(-1) as compared with AB(2) alloy. The discharge rate capability of AB(2) alloy was also improved by ball milling AB(2) with AB(5) alloy process. The combined effect of ball-milling and mixing with AB(5) alloy is superior to that of sole treatment. It was believed that AB(5) alloy works not only as a regular hydrogen storage alloy, but also as a surface modifier to catalyze the hydriding/ dehydriding process of AB(2) alloy.
Resumo:
The energy difference DeltaE between the spin-allowed and spin-forbidden states of Tb3+ in crystals is studied. The environmental factor he representing the character of the host is redefined by using the chemical band of complex crystals. The relationship between h(e) and DeltaE is found to be a linear relation. The results show that the energy difference between the spin-forbidden and spin-allowed states for Tb3+ ions in crystals can be predicted from the environmental factor.
Resumo:
A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml(-1), with a detection limit of 3 ng ml(-1). The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n = 7) by measuring 0.5 mug ml(-1) antigen standard solution.
Resumo:
A poly(thionine) modified screen-printed carbon electrode has been prepared by an electrooxidative polymerization of thionine in neutral phosphate buffer. The modified electrodes are found to give stable and reproducible electrocatlytic responses to NADH and exhibit good stability. Several techniques, including cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), have been employed to characterize the poly(thionine) film. Further, the modified screen-printed carbon electrode was found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 5-100 muM.
Resumo:
Microperoxidase-11 (MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170 mV. which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods. This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.
Resumo:
A stable electroactive thin film of cobalt hexacyanoferrate (CoHCF) was electrochemically deposited on the surface of a glassy carbon (GC) electrode with a new and simple method. The cyclic voltammograms of the CoHCF Film modified GC (CoHCF/GC) electrode prepared by this method exhibit two pairs of well-defined redox peaks, at scan rates up to 200 mV s(-1). The advantage of this method is that it is easy to manipulate and to control the surface coverage of CoHCF on the electrode surface. The modified electrode shows good electrocatalytic activity towards the electrochemical reaction of dopamine (DA) in a 0.1 mol dm (3) KNO3 + phosphate buffer solution (pH 7.0). The rate constant of the electrocatalytic oxidation of DA at the CoHCF/GC electrode is determined by employing rotating disk electrode measurements.
Resumo:
A toluidine blue modified gold electrode was constructed using self-assembled silica gel technique. Firstly, toluidine blue was encapsulated within 3D network of silica self-assembly monolayer on the surface of gold electrode. Secondly, another layer of silica sol was further assembled to protect from leaching of mediator or possible contamination. The electrochemical characteristics of toluidine blue immobilized within self-assembled silica gel were studied in detail. The modified electrode was applied for electrochemical oxidation of NADH with satisfactory results.