622 resultados para Dsc
Resumo:
本论文探讨了烯烃聚合催化剂的合成及其用于聚合的研究,合成的催化剂是不含桥基的IVB族的茂金属化合物。共合成了十九个茂金属化合物:(~tBuC_5H_4)CpMCl_2[M=Ti(1a),Zr(1b)]; Me_3SiC_5H_4CpMCl_2[M=Ti(2a), Zr(2b)];~tBu_2C_5H_3CpMCl_2[M=Ti(3a),Zr(3b)];C_5H_9IndCpMCl_2[M=Ti(4a),Zr(4b)];PhCH_2IndCpMCl_2[M=Ti(5a),Zr(5b)];(~tBu_2C_5H_3)_2MCl~2[M=Ti(6a),Zr(6b),Hf(6c)];(C_5H_9Ind)_2MCl_2[M=Ti(7a),Zr(7b),Hf(7c)];(PhCH_2C_6H_5)_2MCl_2[M=Ti(8a),Zr(8b),Hf(8c)]。这十九个化合物分别通过EI-MS,~1H-NMR,IR 和元素分析进行了表征。用所合成的十九种茂金属化合物与甲基铝氧烷作为催化体系,在常温常压下,研究了乙烯聚合反应。得到的主要结论如下:(1)1a,2a, 5b 8b 催化活性最好。(2)1a 在铝钛比等于 1167 时聚合效率最高,2a 在铝钛比等于 1500 时聚合效率最高, 5b 在铝锆比大于 2955 时聚合效率最高,8b 在铝锆比等于 1667 时聚合效率最高。(3)相同的聚合条件下,催化效率是 1a<2a,8b<5b。(4)由聚合物的DSC表征中可见,所得聚合物的结晶度是 1a<2a,5b>8b。(5)由聚合物的分子量的测定可知,所得聚合物的分子量是 1a>2a ,5b<8b,由 8b 催化得到的聚合物的分子量最大。
Resumo:
采用旋涂的方法制备了主客掺杂15%NAEC/PMMA有机聚合物薄膜,通过测量其DSC曲线来确定玻璃化温度,并在此温度对其进行电晕极化。测量了薄膜极化前后以及退极化的紫外-可见吸收光谱,研究了NAEC/PMMA薄膜中客体生色团的电极化取向以及薄膜的二阶非线性效应。
Resumo:
通过高压扭转对Cu试样施加不同程度的变形,利用OM,TEM及差示扫描量热仪(DSC)对变形组织微观结构及其热稳定性进行了分析.在较小的变形程度下,变形组织为高位错密度的位错胞、亚晶组织,试样的变形储能随变形量的增大而增大,在切应变等于13时达到最大,为0.91 J/mol,DSC曲线显示的放热峰随变形量的增大向低温方向偏移;进一步变形,动态回复加剧,高位错密度的亚晶组织逐渐演化成无位错的等轴状晶粒组织,试样的变形储能减小,组织的稳定性提高.显微硬度随退火温度的提高而减小,晶粒的明显长大导致显微硬度急剧减小.出现明显晶粒长大的温度较DSC曲线显示的放热峰起始温度低45℃左右,这主要是由于变形组织的回复再结晶过程是退火温度与时间的函数,降低处理温度并延长处理时间能达到与高温短时处理相同的效果.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
采用等温凝固方法研究了单晶镍基合金的凝固区间,利用DSC测试了合金的凝固曲线.结果表明:实验合金的液相线温度约为1380℃,固相线温度约为1310℃.合金的凝固顺序为: Lγ,L MC;γγ′;Lγ+MC.单晶合金的铸态组织中,W偏析于枝晶干, Ti,Cr,Mo和Ta偏析于枝晶间,偏析程度为: Mo>Ti>Cr>Ta, Al和Co几乎不发生偏析.1314℃1382℃1361℃1325℃
Resumo:
The molar heat capacities of the two biphenyl liquid crystals, 3BmFF and 3BmFFXF3, with a purity of 99.7 mol% have been precisely measured by a fully automated precision adiabatic calorimeter in the temperature range between T = 80 and 350 K. Nematic phase-liquid phase transitions were found between T = 297 K and 300 K with a peak temperature of T-peak = (298.071 +/- 0.089) K for 3BmFF, and between T = 316 and 319 K with a peak temperature of T-peak = (315.543 +/- 0.043) K for 3BmFFXF3. The molar enthalpy (Delta(trs)H(m)) and entropy (Delta(trs)S(m)) corresponding to these phase transitions have been determined by means of the analysis of the heat capacity curves, which are (15.261 +/- 0.023) U mol(-1) and (51.202 +/- 0.076) J K-1 mol(-1) for 3BmFF, (31.624 +/- 0.066) kJ mol(-1) and (100.249 +/- 0.212) J K-1 mol(-1) for 3BmFFXF3, respectively. The real melting points (TI) and the ideal melting points (TO) with no impurities of the two compounds have been obtained from the fractional melting method to be (298.056 +/- 0.018) K and (298.165 +/- 0.038) K for 3BmFF, (315.585 +/- 0.043) K and (315.661 +/- 0.044) K for 3BmFFXF3, respectively. In addition, the transitions of these two biphenyl liquid crystals from nematic phase to liquid phase have further been investigated by differential scanning calorimeter (DSC) technique; the repeatability and reliability for these phase transitions were verified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Low temperature heat capacities of N-(p-methylphenyl)-N'-(2-pyridyl)urea were determined by adiabatic calorimetry method in the temperature range from 80 to 370 K. It was found that there was not any heat anomaly in this temperature region. Based on the experimental data, some thermodynamic function results were obtained. Thermal stability and decomposition characteristics analysis of N-(p-methylphenyl)-N'-(2-pyridyl)urea were carried out by DSC and TG. The results indicated that N-(p-methylphenyl)-N'-(2-pyridyl)urea started to melt at ca. 426 K (153degreesC) and the melting peak located at 447.01 K (173.86degreesC). The melting enthalpy was 204.445 kJ mol(-1) (899.6 J g(-1)). The decomposition peak of N-(p-methylphenyl)-N'-(2-pyridyl)urea was found at 499.26 K (226.11degreesC) from DSC curve. This result was similar with that from TG and DTG experiment, in which the mass loss peak was determined as 500.4 K (227.2degreesC).
Resumo:
The molar heat capacities of 1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole (Ornidazole) (C7H10CIN3O3) with purity of 99.72mol% were measured with an adiabatic calorimeter in the temperature range between 79 and 380K. The melting-point temperature, molar enthalpy Delta(fus)H(m), and entropy, Delta(fus)S(m), of fusion of this compound were determined to be 358.59 +/- 0.04K, 21.38 +/- 0.02 kJ mol(-1) and 59.61 +/- 0.05 J K-1 mol(-1), respectively, from fractional melting experiments. The thermodynamic function data relative to the reference temperature (298.15 K) were calculated based on the heat capacities measurements in the temperature range from 80 to 380 K. The thermal stability of the compound was further investigated by DSC and TG. From the DSC curve an intensive exothermic peak assigned to the thermal decomposition of the compound was observed in the range of 445-590 K with the peak temperature of 505 K. Subsequently, a slow exothermic effect appears when the temperature is higher than 590 K, which is probably due to the further decomposition of the compound. The TG curve indicates the mass loss of the sample starts at about 440K, which corresponds to the decomposition of the sample. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Monuron (C9H11ClN2O; N,N-dimethyl-N'-(4-chlorophenyl) urea, CAS 150-68-5) was synthesized and the heat capacities of the compound were measured in the temperature range from 79 to 385 K with a high precision automated adiabatic calorimeter. No phase transition or thermal anomaly was observed in this range. The enthalpy and entropy data of the compound relative to the reference temperature 298.15 K were derived based on the heat capacity data. The thermodynamic properties of the compound were further investigated through DSC and TG analysis. The melting point, the molar enthalpy, and entropy of fusion were determined to be 447.6 +/- 0.1 K, 29.3 +/- 0.2 kJ mol(-1), and 65.4 J K-1 mol(-1), respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.
Resumo:
Low-temperature heat capacities of penconazole (C13H15Cl2N3) were precisely measured with an automated adiabatic calorimeter over the temperature rang from 78 to 364 K. The sample was observed to melt at 332.38 +/- 0.06 K. The molar enthalpy and entropy of fusion of the compound were determined to be 33580 +/- 11 J mol(-1), 101.03 +/- 0.02 J mol(-1) K-1, respectively. Further research of the melting process for this compound was carried out by means of differential scanning calorimetry (DSC) technique. The result was in agreement with that obtained from the measurements of heat capacities. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C-p,C-m (J K-1 mol(-1)) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K less than or equal to T less than or equal to 333.297 K, C-p,C-m = 144.27 + 77.046X + 3.5171X(2) + 10.925X(3) + 11.224X(4), where X = (T - 206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K less than or equal to T less than or equal to 378.785 K, C-p,C-m = 325.79 + 8.9696X - 1.6073X(2) - 1.5145 X-3, where X = (T - 366.095)/12.690. A fusion transition at T = 348.02 K was found from the C-p-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol(-1) and 76.58 J mol(-1) K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H-T - H-298.15) and (S-T - S-298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3 +/- 1.4 kJ mol(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380K. The melting point, molar enthalpy (Delta(fus)H(m)) and entropy (Delta(fus)S(m)) of fusion of this compound were determined to be 365.29 +/- 0.06K, 28.193 +/- 0.09 kJ mol(-1) and 77.180 +/- 0.02 J mol(-1) K-1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290degreesC with the peak temperature at 292.7degreesC. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293degreesC corresponding to the maximum decomposition rate. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
For thermal energy storage application, polyurea microcapsules about 2.5 mum in diameter containing phase change material were prepared using interfacial polycondensation method. In the system droplets in microns are first formed by emulsifying an organic phase consisting of a core material ( n-hexadecane) and an oil-soluble reactive monomer, toluene-2, 4-diisocyanate (TDI), in an aqueous phase. By adding water-soluble reactive monomer, diamine, monomers TDI and diamine react with each other at the interface of micelles to become a shell. Ethylenediamine (EDA), 1, 6-hexane diamine (HDA) and their mixture were employed as water-soluble reactive monomers. The effects of diamine type on chemical structure and thermal properties of the microcapsules were investigated by FT-IR and thermal analysis respectively. The infrared spectra indicate that polyurea microcapsules have been successfully synthesized; all the TG thermographs show microcapsules containing n-hexadecane can sustain high temperature about 300 degreesC without broken and the DSC measurements display that all samples possess a moderate heat of phase transition; thermal cyclic tests show that the encapsulated paraffin kept its energy storage capacity even after 50 cycles of operation. The results obtained from experiments show that the encapsulated n-hexadecane possesses a good potential as a thermal energy storage material.