171 resultados para Didymos, ho Areios.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive study of the one-dimensional two-segment Frenkel-Kontorova FK model reveals a transition from the counterintuitive existence to the ordinary nonexistence of a negative-differential-thermal-resistance NDTR regime, when the system size or the intersegment coupling constant increases to a critical value. A “phase” diagram which depicts the relevant conditions for the exhibition of NDTR was obtained. In the existence of a NDTR regime, the link at the segment interface is weak and therefore the corresponding exhibition of NDTR can be explained in terms of effective phonon-band shifts. In the case where such a regime does not exist, the theory of phonon-band mismatch is not applicable due to sufficiently strong coupling between the FK segments. The findings suggest that the behavior of a thermal transistor will depend critically on the properties of the interface and the system size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在兰州重离子加速器国家实验室(HIRFL)放射性次级束流线(RIBLL)上,用束流透射法测量了丰中子奇异核17B与C靶反应的总截面.假定17B具有15B(核芯)+2n结构,采用Gauss+HO形式的密度分布和零力程Glauber模型进行计算的结果可以很好地拟合实验数据,并得出17B的密度分布有一个很大的弥散,表明17B是双中子晕核.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The total reaction cross section (1724 +/- 93 mb) of B-17 at the energy of 43.7 A MeV on C target has been measured by using the transmission method at the Radioactive Ion Beam Line in Lanzhou (RIBLL). Assuming B-17 consists of a core B-15 plus two halo neutrons, the total cross section of B-17 on C target was calculated with the zero-range Glauber model, where double Gaussian density distributions and Gaussian plus HO density distributions were used. It can fit the experimental data very well. The characteristic of halo structure for B-17 was found with a large diffusion of the neutrons density distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

核反应总截面是描述原子核反应基本特征的一个重要的物理量,从中可以得到有关核反应、核结构和核内核子分布的信息。利用透射法测量核的反应总截面对于模型没有依赖性,因而得到的结果更加可靠。在兰州放射性束流线(RIBLL)上利用透射法测量了17B与C、Pb靶的反应,得到了17B与C、Pb的反应总截面和去除双中子截面,同时首次尝试用CLOVER探测器测量与碎片符合的γ能谱。利用半经验的Shen公式可以很好地拟合稳定核的反应总截面的实验结果,但是并不能很好地描述17B的实验结果,说明17B具有奇异结构。采用描述不稳定核的多种密度分布形式代入零力程的Glauber模型计算17B与C的反应总截面,并与实验结果进行了比较。发现采用Skyrme-Hatree-Fock(SHF)、双Gauss、Gauss+HO计算的密度分布形式都能够很好地拟合整个能区内的实验结果。通过各种密度分布形式提取了17B的核子密度分布,发现17B的中子密度分布有很大的弥散,并证实了17B是由核芯15B加两个价中子组成的晕结构。将Skyrme-Hatree-Fock(SHF)、双Gauss、Gauss+HO密度分布形式,输入Glauber模型与实验结果比较,提取了17B的物质均方根半径,不同密度分布提取的均方根半径值在实验误差范围内一致,也进一步验证了17B的晕结构。采用Woods-Saxon势来描述17B核外的价中子在核芯中形成的势场,通过解薛定鄂方程来求解价中子处于特定轨道的波函数。假设17B核外的价中子处于纯的s分波和d分波都不能很好地和实验结果符合。所以认为核外的价中子应该是混合组态,通过拟合实验结果求解出s分波谱学因子的值,证明核外的价中子处在2s1/2轨道的几率更大

Relevância:

10.00% 10.00%

Publicador:

Resumo:

核反应总截面是描述原子核反应基本特征的一个重要的物理量,从中可以得到有关核反应、核结构和核内核子分布的信息。在由放射性束所产生的奇异核结构与各种反应机制的研究中,反应总截面更是具有特殊的重要性。具有奇异核结构的核的一个典型物理现象就是其反应总截面要比稳定核大得多,I.Tanihata等人最早就是通过对放射性束流的相互作用截面的测量发现了具有奇异结构的核-中子晕核。由于反应截面的测量对探测器的要求不高,而且数据分析过程相对较为简单,因此反应截面的测量已经成为放射性束物理研究的一个非常重要的实验手段。目前,奇异核研究的重点在丰中子一侧,理论预言的很多中子晕核如8He、11Li、11、14Be、15、17、19C、等已经从实验上得到证实,而理论预言的质子晕核目前只有8B得到实验证实,其他的核实验数据较少或相互矛盾,无法作出准确的结论。12N就是其中之一,理论学家认为其具有质子晕结构;而实验数据主要集中在的反应截面测量上,实验数据较少又相互矛盾或不肯定,不能得出确切结论。因此,进一步开展研究是十分必要和有意义的。考虑到以上因素,充分利用兰州放射性束流线现有的实验条件,我们采用束流透射法测量了中能区多个能量点12N、11C、12B与Si靶的反应总截面和12N去质子截面。同时用CLOVER探测器测量与碎片符合的γ能谱。利用透射法测量核的反应总截面对于模型没有依赖性,因而得到的结果更加可靠。利用Shen公式和采用各种密度分布形式的零力程Glauber模型计算了12N、11C、12B的激发函数并与实验结果比较,提取了12N、11C、12B的密度分布与核半径,对12N去质子截面作了简单分析。使用Shen公式拟合实验数据时发现,Shen公式在整个能区范围内基本上可以很好的拟合12B、11C的反应数据,但Shen计算得到的12N的反应总截面与实验测量值有明显的差异,计算结果偏小。在使用Glauber模型拟合实验数据之前,分别使用有限力程和零力程Glauber模型拟合了12C+12C的实验数据。在计算时,两种Glauber模型输入的密度分布采用Gauss密度分布形式。结果显示,使用零力程Glauber模型可以更好的拟合实验数据。分别使用高斯密度分布、HO密度分布、双参数费米密度分布、SHF模型计算得到的密度分布、基于少体模型的Gauss+尾巴密度分布形式代入零力程Glauber模型拟合实验数据。对于12B、11C、12C,这些密度分布形式代入零力程Glauber模型计算得到的激发函数曲线在整个能区范围内都可以很好的拟合实验数据。但是对于12N,只有基于少体模型的Gauss+尾巴密度分布形式代入零力程Glauber模型计算得到的激发函数曲线可以拟合实验结果。其他的密度分布形式计算得到的激发函数曲线明显低于实验数据。提取的12B、11C、12N均方根半径显示,12N的核半径明显大于其镜像核12B及其周围的核素。对12B、11C、12N的分析结果表明:12N的密度分布形式和稳定核有明显的不同,最后一个质子的密度分布具有很大的弥散,其可能具有奇异结构。对12N去质子截面的简单分析也表明了这一点

Relevância:

10.00% 10.00%

Publicador:

Resumo:

放射性束流(RIB)装置拓广了实验核物理在同位旋(T_z)自由度上从稳定核直到滴线核的广袤空间。通常,位于β-稳定线及其附近的核,N/Z在1-1.5范围变化,其分离能E_s无论对于质子还是中子,总是在6-8 MeV之间;对于远离稳定线的非稳定核,N/Z可在0.5-4范围变化,如~9C的N/Z = 0.5,~(10)He的N/Z = 4,而且分离能E_s是在0-40 MeV之间变化的,开展对这些远离β-稳定线非稳定核性质、结构的研究是目前核物理的前沿之一。核反应总截面σ_R是表征原子核性质特征的一个基本物理量,从实验测得的核反应总截面中可以得到有关核结构和核内核子分布的信息。在由放射性束流所产生奇异核的结构与各种反应机制研究中,反应总截面的测量更是有其特殊的重要性,具有奇异核结构如晕核的一个典型的物理特征就是其反应总截面要比稳定核大得多,Tanihata等人最早就是通过对放射性束流的相互作用截面的测量发现了具有奇异结构的核,即中子晕核。由于反应总截面的测量对探测器的要求不高,而且数据分析过程相对较为简单,因而反应总截面的测量已经成为放射性束核物理的研究的一个非常重要实验手段。中子晕核以及中子皮核的发现促使人们去寻找质子晕核和质子皮核,由于最后一个质子的结合能非常小只有136,keV,并且有较大的电四极矩,因而使得~8B成为质子晕的最大热门候选核,有关~8B是否具有质子晕核结构的问题,许多实验科学家得出了相互矛盾的回答;而目前有关另外一个质子晕候选核~9C的实验数据非常少,目前还没有人从实验上对~9C是否为质子晕核这一问题进行肯定或否定的回答。因此非常有必要测量~9C和~8B的反应总截面。对反应总截面进行研究的一个非常有用理论就是Glauber模型,该模型考虑了库伦效应的多次散射理论。它是一种基于自由核子-核子(N-N)碰撞的与核物质密度相关的理论,因而能够从实验测量到的反应总截面中提取核物质分布的信息。该理论对中低能区的反应总截面描述却有一个缺憾:理论值比实验值都要小。本论文主要描述了利用透射法测量了中能区同中子素核~9C、~8B、~7Be及~6Li与~(28)Si的反应总截面,并介绍了重离子碰撞以及描述重离子性质的几种常用理论。在论文里对实验测量得到的结果进行了理论分析,这些理论包括半经验的Shen公式、Glauber模型、BUU模型以及SHF理论。如果将~9C和~8B当成具有正常核结构来处理,半经验的Shen公式和Glauber模型(HO密度分布)的理论计算值总是比实验值要小得多;对于Glauber模型的理论计算值和实验值的差异,Ozawa等定义了一个差值因子d,方德清等人对轻核系统的d值进行了详细的分析。一般认为,正常核的d值在20%以内,而对于具有晕或皮奇异结构的核,其d值则超过30%,甚至可达50%,因此可根据一个核的d值是否超过30%而且比相邻核的d值明显大这种半经验的方法来判断一个核是否具有奇异结构;利用d值的分析结果,我们认为:~9C和~8B都具有奇异核结构;对于BUU模型用同样的方法引进差值因子d值,对于~9C和~8B有相同的结论。用SHF理论计算得到B和C同位素的密度分布结果显示,~9C和~8B的密度分布比相邻的同位素扩展都要大得多。为减小Glauber模型计算的反应截面与实验值的差别,本论文还对Glauber模型的输入密度形式进行了修改,在原单一HO分布基础上加一个高斯分布的尾巴,并对丰质子的同中子素核~9C、~8B、~7Be及~6Li与~(28)Si靶以及~(12)C和丰中子的C同位素核~(13-16)C与~(12)C靶的反应截面重新进行了计算,结果显示在中能区的计算值比原来单一密度分布的计算结构有明显改善。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

奇奇核作为研究准质子和准中子间相互作用的独特侯选核,近年来,人们给予了越来越多的关注。奇奇核高j组态带中观测到的低自旋旋称反转现象(Signature inversion)已成为原子核高自旋态领域中一个十分活跃的研究课题。近十年来,一系列基于二准粒子加转子模型框架的计算结果表明,奇奇核中这两个准粒子之间的相互作用与旋称反转现象的发生密切相关。相对于偶偶核和奇A核,奇奇核的能级结构更复杂一些,实验上对其高自旋态的研究比较困难,这主要体现在实验上所提供的许多奇奇核的能级纲图存在着一定程度的不确定性,例如能级的激发能位置、转动带的组态、自旋和宇称的指定,甚至在纲图结构、级联系列的核素归属等方面都有一些问题。其中,转动带能级自旋的指定直接关系到准粒子能量的劈裂属性(即正常劈裂还是反常劈裂、旋称反转发生在低自旋区还是高自旋区及旋称反转的发生位置等):自旋的奇偶性定错了,会导致本来是反转的旋称劈裂变成不反转的(反之亦然);自旋值定错了△I,会导致旋称反转的位置发生相应的漂移。由于实验上奇奇核转动带能级自旋指定的混乱局面,掩盖了旋称反转现象的客观规律,使得相关理论模型的计算结果得不到及时检验。基于激发能系统学分析方法、以顺排角动量相加性为判据,我们曾对A~160轻稀土区的πhl_(11/2)direct X vi_(13/2)转动带(17个核素)和A~130过渡区的πh_(11/2)direct XVh_(ll/2)转动带(20个核素)进行了系统研究,对其中20个核的自旋数据提出质疑、并提出了相应的修正方案,在此基础上总结了两核区旋称反转现象的系统规律。利用激发能系统学方法指定奇奇核转动带的能级自旋,主要遵循以下三点原则:①自旋奇偶性:根据推转壳模型的描述,当准粒子处于优惠态(Favored)时、较非优惠态(Unfavored)具有更大的顺排角动量。这样,通过对转动带中两signature分支系列的i_x大小的比较,可以辅助推断能级自旋的奇偶性;②顺排角动量相加性:在忽略p-n剩余相互作用条件下,奇奇核中总的顺排角动量近似等于相邻奇A核中相应组态带提取的准粒子顺排角动量之和。这样,利用i_x对自旋值比较敏感的特点,可以推断出能级自旋取值的大致范围;③激发能系统性分析:由于集体转动反映大量核子的集体行为,少数核子的改变不会对这种运动产生明显影响,利用转动惯量的组态相关特性,在一组同位素或同中子素系列链中,对应一定内禀结构的转动带,随着质子数或中子数的均匀递增,能级能量应表现光滑的变化趋势(即不发生突变)。这三个方面基于不同角度、相对独立地指定转动带自旋。其结论的统一、往往可以给出正确的自旋数据。然而,必须指出的是:系统学分析过程是一种经验方法,并不具有严格的理论基础,上述的自旋修正以及总结出的旋称反转规律,必须得到实验核谱学测量的支持。基于这一思想,针对两核区,我们分别选择情况较为阿典型的奇奇核~(158)Ho和~(124)Cs进行了集中的实验测量。本论文的主要研究目标就是要建立两核中晕带与低激发态或基态的联系,找出原纲图中错误自旋指定的原因所在,验证系统学结论的有效性,并用旋称反转的实验规律性对理论模型的系统计算结果进行检验。(一)奇奇核~(158)58Ho高自旋态的实验研究在原子能研究院的HI-13串列加速器上,通过~(152)Sm(~(11)B,5nγ)~(158)Ho融合蒸发反应(束流轰击能E_(lab)=60 MeV)、对目标核~(158)Ho的高自旋态进行布居。探测阵列由八个高纯锗探测器构成,为了提高低能射线的收集效率,使用了一个平面型高纯锗探测器。分别进行了激发函数曲线测量、γ-γ-t符合测量和剩余放射性测量。数据反演后,两重符合总记数~120x10~6。实验结果概括如下:1.建立了基态带,组态指定为:{πh_(11/2)[523]7/2-direct Xvh_(9/2)[521]3/2~-}K~π=5~+;2.建立了一个强度仅次于晕带的强耦合带结构(亚晕带:yrare band)。通过转动参数、跃迁几率、顺排角动量、带交叉频率等特征参量的分析,其组态指定为:{πg_(7/2)[404】7/2]~+ direct X vi_(3/2)[651]3/2~+}K~π=5~+。 尽管该带带头附近的结构还不完整,但观测到了带内几条能级退激、分别贯入到晕带和基态带,从而将晕带和亚晕带同基态联系起来,固定了晕带和亚晕带中能级的激发能位置,并通过对这些连接跃迁多极性的分析,指定了两个带中的能级自旋和宇称;3.晕带(πh_(11/2)direct X vi~(13/2))向高自旋端拓展了7条能级,最高自旋态达到26h,激发 能4.9MeV。肯定了原纲图中不确定的617kev跃迁的存在和放置,观测到了反转点(I_(inv.)≈16h),肯定了系统学研究对该核的自旋修正。基于本实验建立的连接关系,晕带中观测到的最低态(即70.8kev跃迁贯入能级)激发能为207.6kev,而对应该能级,原纲图中激发能为156.9kev。这意味着原能级纲图中,晕带向基态退激途径中漏掉了一个~5lkeV的"能隙"(Energy gap),自旋差|△I|=3。根据晕带与退激5-同质异能态的跃迁(156.9kev)的快符合关系,该"能隙"至少由两个跃迁构成。该结果否定了原纲图中对晕带带头处理的三种可能性(①70.8kev为连接跃迁,其退激的能级为带头;②70.8kev为带内跃迁,156.9kev、5-同质异能态为带头:⑨70.8kev为带内跃迁,156.9kev、5-同质异能态为带头,但带头附近仍存在尚未观测的跃迁)。不确切的连接关系是过去实验中无法正确指定晕带自旋的原因;4.建立了一个强耦合的转动带结构,其能级间距(跃迁E_γ)随角动量的增加均匀递增,组态指定为{πh_(11/2)[523]7/2~-direct Xvh_(11/2)[505]11/2~-}K~π=9~+;同时,观测到了另一高K激发态退激到该转动带。其内禀结构指定为:{πg_(7/2)[404]7/2~+direct Xvh_(11/2)[505]1 l/2~-}K~π=9~-;5.建立了基于156.9 kev(I~π=5~-、T_(1/2)=29 ns)同质异能态上的转动带,该带观测完整,具有较强耦合的结构特点。其内禀准粒子轨道指定为:{πh_(11/2)[523]_(7/2)~-direct X vd_(3/2)[402]3/2~+}K~π=5~-,与处于较低激发能(67.3 kev)的2~-态(T_(1/2)=27 min.)构成了一对GM伙伴态。否定了过去的实验中把该态指定为{πg_(7/2)~2+direct Xvh_(9/2)[521]3/2~-}K~π=2~-组态;6.观测到了一个基于65.5 kev激发态的转动带,通过理论模型预言的带头激发能及转动参数与实验值的比较、考虑到其较弱的布居强度和很低的顺排角动量、以及较强耦合的结构特点, 其组态指定为: {πd~(5/2)[402]5/2~direct X vh_(9/2)[521]3/2~-}K~π=4~-。这一结果肯定了过去放射性测量中对处于较高激发能(139.2 kev)、T_(1/2)=1.85 ns、I~π=1~-激发态的讨论,即二者构成了一对GM伙伴态;7.建立了基于{πh_(11/2)[523]7/2~-direct X v_(7/2)[523]5/2~-}K~π=6~+激发态的强耦合转动带结构,其带头激发能为450.1 kev,与I~π=1~+、激发能为146.9 kev的同质异能态构成了一对GM伙伴态;8.在过去的放射性衰变测量中,提供了三个2~+激发态(激发能分别为117.7 kev、74.95 kev和316 kev)。其中两个2~+态(117.7和74.95 kev)同时指定具有{πh_(11/2)[523↑]7/2~-direct X vh_(9/2)[521↓]3/2~-}K~π=2~+组态。这里,我们指定1 17.7 kev的2~+激发态为{πg_(7/2)[404↓]7/2~+ direct X vi_(l3/2)[651↓]3/2~+}K~π=2+组态,即与本实验建立的亚晕带内禀激发态构成了一对GM伙伴态,而74.95 kev的2~+激发态指定为 {πh_(11/2)[523↑]7/2~-direct X vh_(9/2)[521↓]3/2~-}K~π=2~+组态,即与基态构成了一对GM伙伴态。基于本实验中K~π=9~+激发态的观测及其转动带的建立,我们指定激发能为3 1 6 kev的2~+激发态具有{πh_(11/2)[523↓]7/2~-direct X vh_(11/2)[505个]1 1/2~-}K~π=2~+组态,即这两个态构成了一对GM伙伴态;9.通过本实验、提供了~(158)Ho中各能态的跃迁强度和跃迁几率等数据。概括起来,奇奇核~(158)Ho的能级纲图大大完善了。综合本实验观测到的高自旋转动带结构和放射性测量中的部分激发态信息,我们可以整理出10对GM伙伴态,并提供了四个分别对应自旋平行和反平行耦合的GM能量漂移(GM Shift),即:{πh_(ll/2)[523]7/2~-direct Xvh_(9/2)[521]3/2~-}K~π=5~+、2~+,EGM=101.4 kev;{πh_(11/2)[523] 7/2~-direct X vd_(3/2)[402]3/2~+}K~π=5~-、2~-,E_(GM)=64.1 kev;{πd_(5/2)[402]5/2~+direct X vh_(9/2)[521]3/2~-}K~π =4~-、1~-,E_(GM)=113.3 kev;{πh_(11/2)[523]7/2~-direct Xvf_(7/2)[523]5/2~-}K~π=6~+、1~+,EGM=255.7 keV。(二)奇奇核~(124)Cs高自旋态的实验研究在原子能院的HI-13串列加速器上,利用~(116)Sn(~(11)B,3nγ)~(124)Cs融合蒸发反应(束流轰击能E_(lab.)=45 MeV),对奇奇核~(124)Cs的高自旋态进行了布居。探测阵列由10个高纯锗探测器和一个小平面探测器组成。数据反演后,总的两重符合事件数达到160x10~6。实验结果概括如下:1.高自旋转动带的信息更丰富了:建立了三个新的转动带结构,其中两个耦合带、一个退耦带,组态分别为:{πh_(11/2)[550]1/2~- direct X vhd_(5/2)[413]5/2~+}K~π=3~-、{πg_(7/2)[413]5/2~+direct X vg_(7/2)[402】5/2~+}K~π=5~+以及{πh_(11/2)[550]1/2~- direct X vd_(3/2)[400]l/2~+}K~π=1~-;2.低激发态的信息更丰富了:观测到了20多条新的低激发态跃迁,增加了10多个新的低激发态;3.转动带之间以及转动带与低激发态间耦合的信息大大丰富了:在过去的研究中观测到了三个彼此孤立、悬空的转动带结构,这里指定它们的组态为:{πh_(11/2) [550]1/2~-direct X vh_(11/2)[523]7/2~-}K~π=4~+(晕 带) ; {πh_(11/2)[550]1/2~- (direct X)vg_(7/2)[402]5/2~+}K~π=3~-(亚晕带:布居强度仅次于晕带);{πh_(11/2)[550]1/2~-(direct X)vs_(1/2)[411]1/2~+}K~π=1~-(双退耦结构)。其中,亚晕带(yrare band)通过至少三个独立的退激路径与低激发态联系起来;同时,建立了晕带与亚晕带间的多条连接关系。其它转动带分别与晕带和亚晕带联系起来,从而,在奇奇核~(124)Cs中,转动带的"悬空"不再存在,限定了各转动带中能级的激发能位援,并通过这些连接跃迁多极性的分析,分别指定了各能态的自旋和宇称。4.基于本实验建立的连接关系,晕带的最低态(124kev射线贯入能级)的激发能为618.9kev,该能量值比过去研究中的同一能级高出11.7kev。这表明原能级纲图中晕带的退激途径漏掉了一个11.7kev的"能隙"(根据Weisskopf估计,该能隙很可能由两个偶极跃迁构成)。该"能隙"的漏观测,正是导致过去实验中无法正确指定晕带自旋的原因所在;

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文通过在兰州放射性束流线(RIBLL)上进行的6He同Si靶和Pb靶反应实验测量得到了6He与Si靶、Pb靶反应总截面和去除双中子截面以及6He与Si靶、Pb靶反应弹核碎裂产生4He碎片的纵向动量分布。采用能够很好描述正常核反应总截面的半经验的Shen公式计算了4,6 He同Be,C,Al,Si靶的反应总截面。对于4He,从低能到高能理论计算和实验数据符合很好。但是对于6He,理论计算和实验数据符合不好。通过SHF理论、RMF理论、RDDH理论、各种核子密度分布形式(2PHO-tyPe,HO-tyPe,2PFM-tyPe及新提出的修正的费米密度分布MFM-type)计算出6He的各种密度分布(包括晕核密度、皮核密度及正常核密度),带入Glotlber模型计算了6He同Be,C,Al,Si靶的反应总截面以及双中子去除截面,只有使用晕核密度理论计算才能够很好地符合实验数据,进一步证实6He具有双中子晕核结构,确定其基本构型。比较了轻靶(Si革巴)和重靶(Pb靶)电磁离解效应刘一反应总截面和去除双中子截面的影响,重靶电磁离解效应明显。采用能够很好描述稳定核的动量分布宽度的Goldllaber理论、Morrissey经验公式、W.A.Friedman的重离子弹核碎裂模型,以及Lise小组发展的Lise程序,计算了6He与Si靶和Pb靶反应弹核碎裂产生的4He碎片的纵向动量分布,也同样证实了6He具有双中子晕核结构。论文最后,利用同位旋相关的Boltzmann-Langevin方程(IBLE)计算稳定核4He和奇异核6He同c靶的反应系统来研究6He反应动力学特性,研究反应产生的核素产生截面,以及4,5 He产生截面随碰撞参数的变化。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

高剂量电离辐射对健康造成危害,这一点是比较肯定的,而目前人们更关心的是低剂量辐射的健康风险问题。由于缺乏直接的研究数据,低剂量辐射的效应最初是根据线性无闰(LNT)假说推测出来的,推测结果认为任何程度的辐射,无论剂量有多小,对健康都是有害的。但是,LNT假说从提出之日起就受到质疑。近20年的大量实验研究揭示,低剂量辐射可诱导机体和细胞的兴奋效应,低剂量辐射使细胞恶性转化或人群癌症发生率下降,低剂量辐射预先作用减轻继后高剂量照射所造成的有害效应。目前,人们已尝试性地将低剂量辐射效应应用于肿瘤的治疗。本工作以60C0Y射线(0.3oG到min)对肿瘤细胞进行不同的照射:A,假照射,B,scGy照射,c,scGy照射后4h或8h再以3Gy照射,D,3Gy照射。照射后测定细胞周期和克隆存活率。分析了scGyY射线对不同肿瘤细胞细胞周期的影响,scGyY射线诱导的克隆存活适应性反应与细胞周期阻滞适应性反应之间的相关性。最后讨论了本研究结果在肿瘤放射治疗中的潜在应用。本工作结果总结如下:1,scGy丫射线引起hepGZ、HeLa、sMMc-7721和Ho-8910细胞在GZ脑期发生短暂延迟(大致到辐射后4小时),说明细胞周期检查点对损伤非常敏感,很低剂量的辐射即可使之激活。在经过短暂的延迟之后,hePGZ细胞的生长明显加快,照射后24h和48h的相对细胞数分别是对照的124%和216%。结果表明scGy7射线能促进hePGZ细胞的生长。2.3Gyy射线照射后,hepGZ、sMMc-7721和Ho-8910细胞的GZ/M期细胞明显累积,并在照射后12h达到最大值,S期细胞在辐射后6h有一显著累积,此后下降至对照水平。3Gγ照射后的18h内,HeL。细胞的GZ/M期细胞和S期细胞均明显累积。结果表明,3Gyγ射线照射后,hePGZ、sMMc-7721和HO-8910细胞发生GZ/M阻滞,S期短暂延迟,而HeLa细胞的GZ/M期和S期均发生较长时间的延迟,说明HeLa细胞的辐射敏感性和其他三种细胞不一样。这一结果对肿瘤的放射治疗有参考价值。3.在3GyY射线照射之前4h预先照射scGy可使hePGZ和L02细胞在GZ/M期进一步累积,而对HeLa细胞的周期分布没有明显影响,这一结果也说明HeLa细胞的辐射敏感性与其他细胞有差异。4.在3Gyγ射线照射之前8h预先照射scGy可以促进hePGZ细胞通过GZ/M期阻滞。无论两次辐射之间的间隔为4h还是8h,预照射均可诱导hePGZ细胞克降存活适应性反应。这些结果表明,克隆存活适应性反应和细胞周期阻滞适应性反应不是同步出现的,说明克隆存活适应性反应的产生可能并不一定需要细胞从阻滞状态中的恢复,因此,推测这两个方面的适应性反应有一定联系但没有必然相关性。