407 resultados para Copper catalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT), respectively. The effects of temperature on grain refinement and microhardness variation were investigated. For the samples after HPT processing at RT, the grain size reduced from 43 mu m to 265 nm, and the Vickers microhardness increased from HV52 to HV140. However, for the samples after HPT processing at LNT, the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region. Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample, but further deformation induced an inhomogeneous distribution of grain sizes, with submicrometer-sized grains embedded inside micrometer-sized grains. The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature. On the contrary, the micrometer-sized grains were nearly free of dislocation, without obvious deformation trace remaining in them. These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90degreesC shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios were prepared. The NOx storage capacities of these catalysts were measured by isothermal storage at 350 degreesC. It was found that the NOx storage capacity increased with increasing Mg/Al atomic ratios. The catalytic behaviors of Pt/Mg-Al-O and Pt/MgO were studied with storage-reduction cycles at 400 degreesC. Under oxidizing conditions, NOx concentration in the outlet gas gradually increased with time, which indicated the catalysts could store NOx effectively. After a switch from oxidizing conditions to reducing conditions, NOx desorption peak emerged immediately due to the incomplete reduction of stored NOx, which lowered the total NOx conversion. With increasing Mg/Al atomic ratio in the catalysts, NOx conversion increases. Pt/MgO has the highest NOx conversion because of its best activity in the reduction of NOx by C3H6. It seems that with an increasing amount of MgO in the catalysts, the self-poisoning of Pt-sites by adsorbed species during the reaction of NOx with C3H6 may be inhibited effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.