160 resultados para Centrifugal Distortion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以跟踪电视系统中自适应量化器为设计背景,提出了一种新的、实时自适应的快速图象量化方法——逐极均值法,文中首先用Lloyd-Max最佳量化理论分析了这种量化方法的均方误差失真,讨沦了图象中存在孤立亮点时的处理方法。然后论述了这种量化方法应用于跟踪电视系统中的性能,即实现的简单、快速性;对照度变化的自适应性;及图象对比度增强效果。文中通过图象处理实验结果验证了这种量化方法的性能和理论分析的正确性。最后得出结论:逐极均值法量化器是一种能够代替LlodyMax最佳量化器的次佳量化器,这种量化器可以很好地满足跟踪电视系统中对自适应量化器的设计所提出的各方面性能要求;它对那些要求实现简单、实时自适应的量化器应用领域也将具有一定意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为降低成形过程的热应力,抑制成形过程裂缝的产生,减小成形过程试样和基板的翘曲变形,激光金属沉积成形往往需要进行基板预热,因此研究不同基板预热温度对激光金属沉积成形过程温度场的影响具有非常重要的意义.根据有限元分析中的"单元生死"技术,利用APDL编程建立了基板预热对激光金属沉积成形过程温度场影响的三维多道多层数值模拟模型,详细分析了基板未预热和分别预热到200,300,400,500,600℃时对沉积成形过程温度场和温度梯度的影响.通过中国科学院沈阳自动化研究所自行研制的激光金属沉积成形系统和基板预热系统,在与模拟过程相同的参数下,利用镍基合金粉末在基板未预热和分别预热到300,400,500,560℃时进行了成形试验,试验结果跟数值模拟结果吻合较好.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究不同基板预热温度对激光金属沉积成形过程热应力的影响,对于降低成形过程的热应力,抑制成形过程裂缝的产生,减小成形过程试样和基板的翘曲变形具有非常重要的意义。根据有限元分析中的"单元生死"技术,编程建立了基板预热对激光金属沉积成形过程热应力影响的三维多道多层数值模拟模型,详细分析了基板未预热和分别预热到200℃、300℃、400℃、500℃、600℃时对沉积成形过程VonMise’s热应力、X方向、Y方向以及Z方向热应力的影响。在与模拟过程相同的参数下,利用镍基合金粉末分别在基板未预热和分别预热到300℃、400℃、500℃、600℃时进行了成形试验,试验的结果跟数值模拟结果吻合较好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

结构光视觉传感器是视觉焊缝跟踪系统获得焊缝信息的重要组成部分,其测量误差与性能对焊缝跟踪系统的总体测量精度及可靠性有着直接影响。本文对应用于焊缝跟踪的结构光视觉传感器进行误差分析,包括传感器硬件系统结构误差、激光散斑噪声误差及镜头畸变误差等,并对不同结构方式下的视觉传感器建立了数学模型,具体分析了结构参数对其误差的影响,提出结构光视觉焊缝跟踪传感器优化设计方法,并依据仿真结果给出结构优化设计参数,最后通过实验验证了该优化设计方法的正确性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In practice,many fracture reservoir was found,which has giant potential for exporation. For example,in limestone fracture reservoir,igneous rock fracture reservoir and shale fracture reservoir ,there are high yield oil wells found. The fracture reservoir has strong anisotropy and is very difficult to explore and produce.Since 1990’s,the techniques that use structure information and P-WAVE seismic attributes to detect fracture developed very rapidly,include stress and strain analysis,using amplitude,interval velocity,time-difference,azimuthal AVO analysis etc. Based on research and develop these advanced techniques of fracture detect,this paper selected two typical fracture reservoir as target area,according to the characters of research area,selected different techniques to pridect the fracture azimuth and density of target,and at last ,confirmed the favored area. This paper includes six parts:the first chapter mainly addresses the domestic and international research actuality about the fracture prediction and the evolement in ShengLi oil field,then according to the temporal exploration requirement,a research route was established; Based on the close relationship between structural fracture and the geotectonic movement and the procedure of rock distortion,the second chapter research the structural fracture predicting technique which is realized by computing the strain in every geotectonic movement ,which is by use of the forward and inversion of the growing history of structure; The third chapter discussed many kind of traditional techniques for fracture reservoir prediction,and point out their disadvantages.then research and develop the coherence volume computing technique which can distinguish from faults,the seismic wave absorbing technique,and other fracture predicting technique which is by use of seismic attributes ,such as azimuthal AVO FVO etc; The fourth chapter first establish the geological and petrophysical model by use of the existed log and drill well information, then research the variation of amplitude and seismic wave which is caused by fractures.based on it , the fracture predicting technique which is by use of variation of azimuthal impedance is researched;The fifth chapter is a case study,it selects shale fracture reservoir in LuoJia area as target,selects several kind of techniques to apply ,at last ,the fracture distribution of target reservoir and favored area were gotten;the sixth chapter is another case study,it selects limestone fracture reservoir in BoShen6 buried hill as target,selects several kind of techniques to apply,similarly favored area were gotten. Based on deeply research and development of the new techniques for fracture reservoir exploration, This paper selects two fracture reservoirs the most typical in ShengLi as targets to be applied ,good results show up a good application way ,which can be used for reference for future fracture exploration,and it can bring materially economic and social benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expansive soil is a kind of typical unsaturated soil with characteristics of high swelling-shrinking deformation, cracks and over consolidation. It is very harmful to civil engineering, As a new processing method deal with expansive soil, Chemistry treatment has widespread applied in developed countries such as Europe and America, and also gained remarkable result. Based on the embankment filling soil improving testing projects in Meng-Xin freeway, this paper proposed a new processing method to expansive soil embankment wrapped with PAS-treated soil, experimental study of expansive soil chemical improved by PAS is been carried out. The water content change is the external factor which causes expansive soil to have swelling-shrinkage deformation. this reflected that the soil body swelling-shrinkage characteristic mainly depends on its mineral ingredient and the soil-water mutual function. This paper takes expansive soil as one kind of ordinary high plastic clay from angle of clay-water mutual function explained the expansive soil swelling-shrinkage deformation mechanism on microscopic. And take this swelling-shrinkage mechanism as the master line, Cooperates with the China Academy of Chemistry, we developed the new method PAS treatment, trough ionic exchange, joint, package and flocculation, the stronger static electricity function weakened the level through adsorption and the stronger static electricity function, PAS can weakened the negative charge repulsion between levels, causes the electric potential to reduce, diffusion layer thickness to be thinner, and improves the water affinity performance of expansive soil effectively. Moreover the space network architecture compromised with PAS and soil enhanced the joint strength between the clay particles , enable the soil body to have comparatively high strength and the distortion rate. pointed proposed the PAS modified principle. Combine with the construction of experimented road, this paper sums up and presents the construction craft and technology requirement of PAS treatment to expansive soil embankment. Through many experimental studied the basic physical property, the intensity characteristic and water stability changes of expansive soil and PAS-treated soil. The results of study indicate that adding lime into the expansive soil can reduce the content of clay gain obviously, reduce the plasticity notably, increase the strength greatly, control the property of swelling and shrinking effectively, and can meliorate the stability of sucking water clearly. Simultaneity PAS don’t change the cultivate capacity of the soil, the modified slope of the embankment can adopt plant fixed slope method as ecology protection. Finally the processing effect of use different treatment has analyzed through numerical simulation, summarized the PAS chemical wrapping treatment process in the actual project application, and appraised its processing effect and the project efficiency. The research indicated that PAS chemical treatment is one effective method to improve expansive soil. Compare with long-distance replacement, especially in the high plastic expansive soil massive distribution area, PAS treatment has the very greatly economical superiority to be promoted. The study in the paper not only afforded technique method to Meng-Xin expressway construction but also important for improvement of the expressway construction theory in swelling soil areas. Key words: PAS; expansive soil; swelling-shrinkage deformation mechanism; wrapping embankment; chemical modified treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eastern Himalayan Syntaxis (EHS) and its surroundings (eastern margin of Tibet) is one of the most complicated tectonic areas in the world. As the exhaust opening of the balanced materials of the Tibetan Plateau during the collision of Indan and Eurasian plates, the deep structure beneath EHS surrounding region is referred to as the key to the study of the dynamics of the plateau. EHS3D project, sponsored by NSFC, has been proposed to explore the deep electric features of the area. During the first stage of EHS3D(2006-2008), MT+LMT measurements have been conducted along two lines from Chayu to Qingshuihe (EHS3D-3) and Chayu to Ruoergai (EHS3D-2). This paper will discuss the MT models of EHS3D-3 line. By the data procrssing, including distortion analysis, Robust estimation and strike decomposition, rotated apparent resitivities and phases have been obtained for each station. Then conventional 2-D inversion algorithms (NLCG and RRI) were employed to produce 2-D models. The final preferred 2-D model suggests that the upper crust consists of resistive blocks while in mid-lower crust there are two extensive conductive bodies beneath Lhasa block and Qiangtang terrain respectively. Jinshajiang suture is a gradient belt and Bangong-Nujiang suture appear a conductive belt dipping to the north. . We concluded that the formation of the two conductive bodies attributed to the partial melt and fluids in the lower crust. The regional electric strike derived from decomposition analysis indicates that the crust and upper mantle move in different manners. The upper crust moves like slips of rigid blocks along major slip faults while the lower crust creeps as a flow in the conductive channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The real earth is far away from an ideal elastic ball. The movement of structures or fluid and scattering of thin-layer would inevitably affect seismic wave propagation, which is demonstrated mainly as energy nongeometrical attenuation. Today, most of theoretical researches and applications take the assumption that all media studied are fully elastic. Ignoring the viscoelastic property would, in some circumstances, lead to amplitude and phase distortion, which will indirectly affect extraction of traveltime and waveform we use in imaging and inversion. In order to investigate the response of seismic wave propagation and improve the imaging and inversion quality in complex media, we need not only consider into attenuation of the real media but also implement it by means of efficient numerical methods and imaging techniques. As for numerical modeling, most widely used methods, such as finite difference, finite element and pseudospectral algorithms, have difficulty in dealing with problem of simultaneously improving accuracy and efficiency in computation. To partially overcome this difficulty, this paper devises a matrix differentiator method and an optimal convolutional differentiator method based on staggered-grid Fourier pseudospectral differentiation, and a staggered-grid optimal Shannon singular kernel convolutional differentiator by function distribution theory, which then are used to study seismic wave propagation in viscoelastic media. Results through comparisons and accuracy analysis demonstrate that optimal convolutional differentiator methods can solve well the incompatibility between accuracy and efficiency, and are almost twice more accurate than the same-length finite difference. They can efficiently reduce dispersion and provide high-precision waveform data. On the basis of frequency-domain wavefield modeling, we discuss how to directly solve linear equations and point out that when compared to the time-domain methods, frequency-domain methods would be more convenient to handle the multi-source problem and be much easier to incorporate medium attenuation. We also prove the equivalence of the time- and frequency-domain methods by using numerical tests when assumptions with non-relaxation modulus and quality factor are made, and analyze the reason that causes waveform difference. In frequency-domain waveform inversion, experiments have been conducted with transmission, crosshole and reflection data. By using the relation between media scales and characteristic frequencies, we analyze the capacity of the frequency-domain sequential inversion method in anti-noising and dealing with non-uniqueness of nonlinear optimization. In crosshole experiments, we find the main sources of inversion error and figure out how incorrect quality factor would affect inverted results. When dealing with surface reflection data, several frequencies have been chosen with optimal frequency selection strategy, with which we use to carry out sequential and simultaneous inversions to verify how important low frequency data are to the inverted results and the functionality of simultaneous inversion in anti-noising. Finally, I come with some conclusions about the whole work I have done in this dissertation and discuss detailly the existing and would-be problems in it. I also point out the possible directions and theories we should go and deepen, which, to some extent, would provide a helpful reference to researchers who are interested in seismic wave propagation and imaging in complex media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the largest and highest plateau on the Earth, the Tibetan Plateau has been a key location for understanding the processes of mountain building and plateau formation during India-Asia continent-continent collision. As the front-end of the collision, the geological structure of eastern Tibetan Plateau is very complex. It is ideal as a natural laboratory for investigating the formation and evolution of the Tibetan Plateau. Institute of Geophysics, Chinese Academy of Sciences (CAS) carried out MT survey from XiaZayii to Qingshuihe in the east part of the plateau in 1998. After error analysis and distortion analysis, the Non-linear Conjugate Gradient inversion(NLCG), Rapid Relaxation Inversin (RRI) and 2D OCCAM Inversion algorithms were used to invert the data. The three models obtained from 3 algorithms provided similar electrical structure and the NLCG model fit the observed data better than the other two models. According to the analysis of skin depth, the exploration depth of MT in Tibet is much more shallow than in stable continent. For example, the Schmucker depth at period 100s is less than 50km in Tibet, but more than 100km in Canadian Shield. There is a high conductivity layer at the depth of several kilometers beneath middle Qiangtang terrane, and almost 30 kilometers beneath northern Qiangtang terrane. The sensitivity analysis of the data predicates that the depth and resistivity of the crustal high conductivity layer are reliable. The MT results provide a high conductivity layer at 20~40km depth, where the seismic data show a low velocity zone. The experiments show that the rock will dehydrate and partially melt in the relative temperature and pressure. Fluids originated from dehydration and partial melting will seriously change rheological characteristics of rock. Therefore, This layer with low velocity and high conductivity layer in the crust is a weak layer. There is a low velocity path at the depth of 90-110 km beneath southeastern Tibetan Plateau and adjacent areas from seismology results. The analysis on the temperature and rheological property of the lithosphere show that the low velocity path is also weak. GPS measurements and the numerical simulation of the crust-mantle deformation show that the movement rate is different for different terranes. The regional strike derived from decomposition analysis for different frequency band and seismic anisotropy indicate that the crust and upper mantle move separately instead of as a whole. There are material flow in the eastern and southeastern Tibetan Plateau. Therefore, the faults, the crustal and upper mantle weak layers are three different boundaries for relatively movement. Those results support the "two layer wedge plates" geodynamic model on Tibetan formation and evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study of the low-temperature oxidation of CO was conducted over Pd/TiO2, Pd/CeO2, and Pd/CeO2-TiO2 pretreated by a series of calcination and reduction processes. The catalysts were characterized by N-2 adsorption, XRD, H-2 chemisorption, and diffuse-reflectance infrared Fourier transform spectroscopy. The results indicated that Pd/CeO2-TiO2 has the highest activity among these catalysts, whether in the calcined state or in the reduced state. The activity of all of the catalysts can be improved significantly by the pre-reduction, and it seems that the reduction at low temperature (LTR. 150 degrees C) is more effective than that at high temperature (HTR, 500 degrees C), especially for Pd/CeO2 and Pd/TiO2. The catalysts with various supports and pretreatments are also different in the reaction mechanisms for CO oxidation at low temperature. Over Pd/TiO2, the reaction may proceed through a surface reaction between the weakly adsorbed CO and oxygen (Langmuir-Hinshelwood). For Ce-containing catalysts, however, an alteration of reaction mechanism with temperature and the involvement of the oxygen activation at different sites were observed, and the light-off profiles of the calcined Pd/CeO2 and Pd/CeOi-TiO2 show a distortion before CO conversion achieves 100%. At low temperature, CO oxidation proceeds mainly via the reaction between the adsorbed CO on Pd-0 sites and the lattice oxygen of surface CeO2 at the Pd-Ce interface, whereas at high temperature it proceeds via the reaction between the adsorbed CO and oxygen. The high activity of Pd/CeO2-TiO2 for the low-temperature CO oxidation was probably due to the enhancements of both CO activation, caused by the facilitated reduction of Pd2+ to Pd-0, and oxygen activation, through the improvement of the surface oxygen supply and the oxygen vacancies formation. The reduction pretreatment enhances metal-support interactions and oxygen vacancy formation and hence improves the activity of CO oxidation. (c) 2005 Elsevier Inc. All rights reserved.