196 resultados para Cat. Mironiano
Resumo:
【目的】研究小白菜幼苗对二氧化氮(NO2)急性胁迫的应答及过氧化氢(H2O2)的调节作用。【方法】在自制的熏气箱中对供试植株进行NO2(浓度分别为0.25、0.5、1.0和2.0μl·L-1)熏蒸24h(10﹕00~次日10﹕00),测定某些生理生化指标。延长熏气至7d,每天7h(8﹕00~15﹕00),测定植株的生长速率。为了评价外源H2O2在植株对NO2应答中可能的调节作用,熏气前1d对试验组叶面喷洒10mmol·L-1H2O2溶液(相当于每棵植株喷洒约1mgH2O2),对照组喷洒等量蒸馏水。【结果】0.25μl·L-1NO2促进小白菜生长,而0.5μl·L-1及以上浓度NO2使植株生长速率和叶绿素含量显著降低,叶片硝酸还原酶(NR)和超氧化物歧化酶(SOD)活性以及丙二醛(MDA)含量增加;1μl·L-1及以上浓度NO2使老叶片出现坏死,绿色部分的过氧化氢酶(CAT)活性和硝酸盐(NO3-)含量增加,抗坏血酸(ASA)含量和光合速率下降,但气孔导度不受影响。10mmol·L-1H2O2预处理显著减轻NO2对植株的不利影响,其中生长速率、ASA和MDA含量等与只通入碳滤空气的对照水平相当,光合速率明显恢复,但NO3-含量和NR活性没有变化,SOD和CAT性被进一步诱导,气孔导度降低。【结论】NO2急性胁迫引发了小白菜幼苗氧化胁迫伤害;H2O2预处理提高了小白菜的抗氧化能力,增强了对高浓度NO2的耐受性;NO2熏蒸使小白菜叶片NO3-含量增加。
Resumo:
通过对小麦幼苗部分生理指标的分析,研究了外源有机酸(乙酸、草酸和柠檬酸)对铅胁迫小麦幼苗的缓解效应。结果表明:加入3种外源有机酸均能够减轻铅对小麦叶绿素的破坏;低浓度的有机酸能提高受铅胁迫小麦的保护酶(SOD、POD、CAT)的活性,降低MDA含量,但随着外源有机酸处理浓度的增加,缓解作用降低或消失,保护酶活性降低,MDA含量增加。3种有机酸中草酸对铅胁迫的缓解作用最明显。
Resumo:
以小麦(Triticum acstivnm)为供试植物,草甸棕壤为供试土壤,以微粒体细胞色素P450及抗氧化酶SOD、POD和CAT活性为指标,进行了土壤中菲、芘单一及复合胁迫响应研究。结果初步表明,菲、芘胁迫引起植物体内解毒代谢和抗氧化防御酶反应。菲、芘单一胁迫浓度为1mgkg-1时对细胞色素P450产生显著诱导;4mgkg-1时P450酶含量明显被抑制,表明低浓度菲、芘单一胁迫对植物代谢解毒系统产生损伤;而菲、芘复合1mgkg-1时P450酶含量明显被抑制,说明菲、芘复合胁迫对植物的代谢解毒具有协同毒性效应。土壤中菲、芘单一胁迫未引起SOD酶活性的明显改变,复合胁迫下SOD酶活性出现微弱下降;菲、芘单一胁迫对CATPOD酶活性具有显著抑制作用;复合胁迫对CAT生抑制作用,而POD酶活性并未对菲、芘复合产生增强毒性响应。研究从代谢解毒和抗氧化防御酶系统两方面,为土壤低浓度PAHs污染诊断提供了实验依据。
Resumo:
以玉米(ZeamaysL.)为供试植物,草甸棕壤为供试土壤,以微粒体细胞色素P450含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性为指标,进行了土壤菲、芘暴露的生态毒理响应研究.结果表明,菲、芘暴露均能引起植物代谢解毒和抗氧化防御系统的胁迫响应,不同程度引发植物代谢解毒及抗氧化能力的改变.P450酶活性与低浓度菲、芘单一暴露浓度具有相关性(r=0.834,p<0.01),与菲、芘复合暴露浓度负相关,说明菲、芘复合暴露导致代谢解毒能力下降,对植物的代谢解毒具有协同毒性效应;SOD酶活性与菲、芘单一暴露浓度负相关,CAT活性与菲、芘单一暴露浓度正相关,POD酶活性与菲的水溶解度正相关,而与芘的总浓度负相关.SOD、CATPOD酶活性与菲、芘复合暴露浓度均呈正相关,说明菲、芘复合暴露导致氧化损伤程度减弱,对植物的氧化损伤具有拮抗作用.
Resumo:
alpha-Diimine nickel catalyst hearing two allyl groups [ArN=C](2)C10H6NiBr2 (Ar = 4-allyl-2,6-(i-Pr)(2)C6H2)] (Cat-I) has been synthesized and characterized. The corresponding polymer-incorporated nickel catalysts PC and the SiO2-supported shell-core structure catalyst SC-1 were obtained by the co-polymerization of the olefin groups of Cat-1 with styrene in the presence of a radical initiator. Radical co-polymerizations with styrene in Solution were investigated in detail, and the compositions and molecular weight of the copolymers were determined. All three types of catalysts (Cat-1, PC and SC-1) have been investigated for ethylene polymerization. These catalysts were found to exhibit high activity in the presence of modified methylaluminoxane (MMAO) as a co-catalyst. Among them, the polymer-incorporated PC and SiO2 shell-core catalyst SC-1 displayed very high activity (similar to2.62 and similar to1.11 kg (mmol Ni)(-1) h(-1), respectively) with product molecular weights (M,) in the range 26 x 10(4) to 47 x 10(4) under 0.1 MPa ethylene pressure. The particle morphology of polyethylene produced by the shell-core structure catalyst SC-1 was improved.
Resumo:
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.
Resumo:
Supported nickel catalyst (Ni-Cat) was used as a catalyst to improve the flame retarclancy of intumescent flame-retardants (IFR) systems based on ammonium polyphosphate and pentaerythritol (PETOL) in polypropylene (PP) matrix. Limited oxygen index (LOI), UL-94 rating, and thermogravimetric analysis were used to characterize the flame retardancy and thermal stability of the PP systems, and field emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the microstructure and composition of the chars formed during measuring LOI value and after combustion at 800 degrees C. The catalytic effect of NiCat was shown in an increase of LOI, a change in the char microstructure, and improvement of the thermal stability in the PP systems, which result from the synergistic effect of Ni-Cat and IFR. The results from FE-SEM and FTIR spectra of the char can explain how this synergistic effect happened.
Resumo:
meso-Tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene) porphyrin was used as a complete antigen to elicit monoclonal antibody 1F2 through the immunization and cell fusion techniques. McAb 1F2 obtained was demonstrated very pure by HPLC and MALDI/TOFMS. The retention time of McAb 1F2 was 2. 63 min. The subtype of McAb 1F2 was IgG2a. The relative molecular weight was 156 678. 8. When the McAb 1F2-porphyrin was formed, the maximal absorption of the porphyrin soret region had a redshift from 408 to 416 nm and hyperchromical effect, showing that the antigen-antibody combination was rigid and intense, and the abzyme constancy was high. But compared with HRP, the activity of the abzyme was only 4. 687 5 U/mg and 1. 899 % of that of HRP. Its K-m was 20. 29 mmol/L, k(cat) 396. 82 min(-1), k(cat)/K-m. 1. 955 7 X 10(4) L . mol(-1) . min(-1).
Resumo:
Three selenium-containing catalytic antibodies mHB4, mHB5 and mHB7 which acted as mimics of cytosolic glutathione peroxidase(cGPX), were prepared by chemically introducing selenium into monoclonal antibodies HB4, HB5 and HB7. HB4. HB5 and HB7 were raised against a GSH derivative GSH-S-DNP dibenzyl ester, The cGPX activity of mHB4, mHB5, mHB7 were 170, 1 867, 32 U/mu mol, respectively. The cGPX activity of mHB5 was 0, 32 fold of natural rabbit liver cGPX and 1. 51 fold of m4A4. About two atoms of selenium existed in each of mHB5 molecule determined by inductively-coupled plasma/mass spectroscopy (ICP-MS), The optimal activity of mHB5 was at between pH 8. 4 and 8, 8, The reaction catalyzed by mHB5 involved a Ping-Pong mechanism. At pH 7. 0 and 37 degreesC, the apparent second-order rate constants for reaction of mHB5 with H2O2 and t-ROOH were as followed: k(+1) (H2O2) = 9. 71 x 10(6) L/(mol min), k(+1)(t-ROOH) = 5. 99 x 10(5) L/(mol.min). Rate accelerations (k(cat)/K-m/k(uncat)) 9. 8 x 10(6) and 3.7 x 10(5) fold those of the uncatalytic reaction were observed.
Resumo:
用二茚基稀土胺化物Ind2 LnN(i Pr) 2 (Ln =Y ,Yb)作为单组分催化剂催化丙烯腈聚合 ,研究了催化剂用量、单体浓度及聚合温度对标题化合物的催化活性和所得聚丙烯腈的分子量的影响。提高聚合发应温度可明显提高催化活性 ,当聚合温度达 5 0℃ ,单体浓度为 5 1mol·L- 1 ,催化剂用量为 0 3 % (摩尔分数 )时 ,其催化活性可达 64 %。外加添加剂PhONa ,其转化率和聚合物分子量都明显增大 ,当PhONa∶cat =3 ,其转化率可达 76% ,分子量达 1 3 2× 10
Resumo:
Ring-opening polymerization of epsilon-caprolactone (CL) catalyzed by lanthanocenes, O(C2H4C5H3CH3)(2)YCl (Cat-YCl) and Me2Si[(CH3)(3)SiC5R3](2)NdCl (Cat-NdCl) has been carried out for the first time. It has been found that both yttrocene and neodymocene are very efficient to catalyze the polymerization of CL, giving high molecular weight poly(epsilon-caprolactone) (PCL). The effects of [cat]/[epsilon-CL] molar ratio, polymerization temperature and time, as well as solvents were investigated and polymerization temperature is found to be the most important factor affecting the polymerization. The bulk polymerization gives higher molecular weight PCL and higher conversion than that in solution polymerization. NaBPh4 was found to promote the polymerization of epsilon-caprolactone, and thus to increase both the polymerization conversion and MW of poly(epsilon-caprolactone).
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
Aims: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. Methods nand Results: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. Conclusions: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. Significance and Impact of the Study: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world.
Resumo:
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate-glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.
Resumo:
Oxytetracycline-resistant bacteria were isolated from a mariculture farm in China, and accounted for 32.23% and 5.63% of the total culturable microbes of the sea cucumber and the sea urchin rearing waters respectively. Marine vibrios, especially strains related to Vibrio splendidus or V. tasmaniensis, were the most abundant resistant isolates. For oxytetracycline resistance, tet(A), tet(B) and tet(D) genes were detected in both sea cucumber and sea urchin rearing ponds. The dominant resistance type for V. tasmaniensis-like strains was the combination of both tet(A) and tet(B) genes, while the major resistance type for V. splendidus-like strains was a single tet(D) gene. Most of the sea cucumber tet-positive isolates harbored a chloramphenicol-resistance gene, either cat IV or cat II, while only a few sea urchin tet-positive isolates harbored a cat gene, actually cat IV. The coexistence of tet and cat genes in the strains isolated from the mariculture farm studied was helpful in explaining some of the multi-resistance mechanisms. (c) 2006 Elsevier Ltd. All rights reserved.