174 resultados para BLOCK-COPOLYMERIZATION
Resumo:
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The miscibilities of blends of homopolystyrene/styrene-butadiene/styrene (PS/SBS) and PS/SB-4A (4-arm star block copolymer) have been studied by dynamic mechanical analysis (DMA) and C-13 CPMAS NMR techniques. The results indicate that the miscibilities o
Resumo:
The microstructures of styrene-butadiene triblock (SBS) and styrene-butadiene four-arm star block (SB-4A) copolymers and their blends with homopolystyrene (PS) of different molecular weights, MPS, have been investigated by means of small-angle X-ray scatt
Resumo:
The proton spin-spin relaxation times (T-2(H)) at different temperatures (from 160 to 390 K) have been determined for polystyrene (PS) and four-arm star styrene-butadiene block copolymer (SB-4A) and its blends with PS of different molecular weights (M(PS)
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
A surface fractal model was presented to describe the interface in block copolymers. It gives a simple power-law relationship between the scattering intensity I(q) and the wave vector q in a relatively wide range as qxi >> 1, I(q) is-proportional-to q(D-6
Resumo:
In the present work, the mechanism of radiation-induced copolymerization of acrylamide (AM) with sodium acrylate (AANa) in aqueous solution was studied. A method to protect the copolymerization system from the crosslinking and a carbon-carbon mechanism to form gel in copolymerization reaction have been proposed. The condition to prepare the products with different molecular weight, especially with very high molecular weight were found.
Resumo:
The viscosities of polystyrene-b-poly (ethylene/propylene) diblock copolymer in mixed solvent of n-octane and benzene were measured. The influences of the constitution of the mixed solvent, temperature and concentration were on the viscosity investigated. During the micellization the solution viscosity increases rapidly. The results are consistent with the study on the micellization by light scattering. The average mass of micelleswas measured and the hydrodynamic radius of gyrations were calculated.
Resumo:
This paper describes the roles of silica (SiO2), the butoxy ligand (-OBu) and ethyl benzoate (EB) on ethylene/1-butene copolymerization with MgCl2/SiO2-supported titanium catalysts. The distribution of SiO2 and of the elements Mg and Ti was observed by means of an energy-dispersed X-ray microanalyzer on a scanning electron microscope (SEM). An inversed Si/Mg ratio results, at invariant Ti/Mg ratio and -OBu content, in higher catalyst efficiency and higher comonomer incorporation, with a correspondingly decreased crystallinity of the copolymers. Thus, the inert carrier SiO2 favors copolymerizability, as seen from the values of the reactivity ratios. The copolymer compositional distribution is also affected by the SiO2 content, as seen from the DSC curves of the copolymers. As to the copolymer morphology, addition of SiO2 makes the copolymer particles larger and more uniform.
Resumo:
Unsteady diffusion kinetic, recently advanced by this laboratory, is applied to the examination of some polymerization and molecular chain structure problems. Hitherto deemed "anomalous" phenomena, such as the faster rate of copolymerization of ethylene/alpha-olefin than the homopolymerization of ethylene and the enrichment in the incorporation of a higher alpha-olefin in its copolymerization with ethylene by a lower alpha-olefin, are reasonably explained by unsteady diffusion of monomers. Molecular chain structure of copolymers, such as compositional heterogeneity and its dependence on comonomer incorporation originates from the difference in diffusion coefficients of the monomers. A copolymer composition equation taking into consideration the unsteady diffusion was developed. In cases where simulated curves were compared with experimental curves, good agreements were found.
Resumo:
Studies using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction showed correlations between the crystallization behavior of the polydimethylsiloxane (PDMS) block and the morphology of the block copolymer poly (butadiene-b-dimethylsiloxane) (PB-PDMS). When the PDMS component existed as spheres dispersed in a PB matrix, the crystallization rate of the PDMS block was lower than when the PDMS phase existed in rod or cylinder form.
Resumo:
The toughening effect of the separate phases of ethylene/propylene block copolymers and their blends was studied by scanning electron microscopy (SEM). The results obtained show that the interfacial adhesion between separate phases and the isotactic polypropene (iPP) matrix in ethylene/propylene block copolymers is strong at room temperature, but poor at low temperature; specimens exhibit tearing of separate phases during fracture at room temperature, but interfacial fracture between separate phases and the iPP matrix at low temperature. From the characteristics of fractographs of ethylene/propylene block copolymers and their blends, it could be concluded that the separate phases improve the toughness of specimens in several ways: they promote the plastic deformation of the iPP, and they can be deformed and fractured themselves during the fracture process. However, it was shown that the plastic deformation processes, such as multiple-crazing, shear yielding, etc. of the matrix are the dominant mechanisms of energy absorption in highly toughened ethylene/propylene block copolymers and their blends. The deformation and fracture of separate phases are only of secondary importance.
Resumo:
Thin films of PSt/PMAA and PEO-PSt-PEO block polymers were deposited on a polystyrene substrate by solution adsorption (with or without solvent treatment), and the film surfaces were characterized by means of XPS. Direct solvent - casting of PEO-PSt-PEO from benzene solutions resulted in PSt-rich surfaces, whereas PMAA richer surfaces were obtained for PSt/PMAA films cast from DMF solutions. Moreover, solvent treatment after casting had profound effect on the film surface composition. Treatment with water markedly increased the surface concentration of polar PEO segments. In the case of PSt-PMAA block polymers, the PSt content on the surface increased in the order of water < ethanol < cyclohexane < petroleum ether, the last-named giving films with almost pure PSt surface. It is well worth noticing that the bulk composition had little to do with the surface composition for both PSt/PMAA and PEO-PSt-PEO block polymers within the composition range investigated when subsequent solvent treatment was applied.
Resumo:
The effect of micelle on crystallization behaviour of dilute poly(methyl methacrylate-b-tetrahydrofuran) diblock copolymer/tetrahydrofuran homopolymer, dilute poly (ethylene-b-styrene-b-ethylene) triblock copolymer/ethylene homopolymer solutions has been studied. The results show that with the structural teansitions from spherical to nonspherical micelle in the blends, great changes in the nucleation and spherulite morphologies take place.