241 resultados para Amount hydrate-bound CH4
Resumo:
The reduction of NO by CH4 in the presence of excess O-2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N-2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360degreesC instead of a temperature of 420degreesC in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.
Resumo:
Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reactions of (1) CH4 + MgO --> MgOH. + CH3. and (2) CH4 + MgO --> Mg + CH3OH have been studied on the singlet spin state potential energy surface at the MP2/6-311+G(2d,2p) level. These two reaction channels, both involving intermediates and transition states, have been rationalized by the structures of the species involved, natural bond orbital (NBO), and vibrational frequency analysis. We have considered two initial interacting models between CH4 and MgO: a collinear C-H approach to the O end of the MgO forming the MgOCH4 complex with C-3nu symmetry and three hydrogen atoms of the methane point to the Mg end of the MgO forming the OMgCH4 complex with C-1 symmetry. The calculations predict that reactions 1 and 2 are exothermic by 39.8 and 86.5 kJ mol(-1), respectively. Also, the former reaction proceeds more easily than the latter, and the complex HOMgCH3 is energetically preferred in the reaction of MgO + CH4.
Resumo:
The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.
Resumo:
The selective catalytic reduction (SCR) of NOx by methane in the presence of excess oxygen was studied on a Zn-Co/HZSM-5 catalyst. It was found that the addition of Zn could improve effectively the selectivity of methane towards NOx reduction. When prepared by a coimpregnation method, the Zn-Co/HZSM-5 catalyst showed much higher catalytic activity than the two catalysts of a Zn/Co/HZSM-5 and Co/Zn/HZSM-5 prepared by the successive impregnation method. It is considered that there exists a cooperative effect among the Zn, Co and zeolite, which enhances the reduction of NO to NO2 reaction and the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new process has been suggested for converting natural gas to ethylene by combining oxidative coupling of methane with ethane dehydrogenation to provide an efficient method for the utilization of thermicity and CO2. From their thermodynamics, it is clear that the exothermicity from CH4 oxidative coupling reaction (DeltaH(800degreesC) = -174.3 kJ mol(-1)) can support C2H6 dehydrogenation by CO2 (DeltaH(800degreesC) = + 180.2 kJ mol(-1)). Meanwhile, the two reactions can be conducted under the same reaction conditions, such as the reaction temperature and reaction pressure as well as space velocity. In addition, the CO2 yielded from CH4 oxidative coupling reaction can be directly used for C2H6 dehydrogenation. Two kinds of catalyst are developed for this combined process with an achievement, from which C2H4 content in tail gas can reach attractively 16.4%, which can be used directly to produce ethylbenzene by the alkylation of benzene. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Using static chamber technique,fluxes of CO2,CH4 and N2O were measured in the alpine grassland area from July 2000 to July 2001,determinations of mean fluxes showed that CO2 and N2O were generally released from the soil,while the alpine grassland accounted for a weak CH4 sink.Fluxes of CO2,CH4 and N2O ranged widely.The highest CO2 emission occurred in August,whereas almost 90?of the whole year emission occurred in the growing season.But the variations of CH4 and N2O fluxes did not show any clear patterns over the one-year-experiment.During a daily variation,the maximum CO2 emission occurred at 16:00,and then decreased to the minimum emission in the early morning.Daily pattern analyses indicated that the variation in CO2 fluxes was positively related to air temperatures(R^2=0.73)and soil temperatures at a depth of 5 cm(R^2=0.86),whereas daily variations in CH4 and N2O fluxes were poorly explained by soil temperatures and climatic variables.CO2 emissions in this area were much lower than other grasslands in plain areas.