276 resultados para Époque de transition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction mechanisms of the H-2 with the homonuclear dimers M-2 (Cu, Ag, Au) and the heteronuclear dimers PdM (M = Cu, Ag, Au) were studied by use of density functional theory. For the H-2 reactions with homonuclear dimers M-2 (Cu, Ag, Au), it was found that it is easier for Au-2 to dissociate the hydrogen molecule compared with Cu-2 and Ag-2. For H-2 reactions with the heteronuclear dimers PdM (M = Cu, Ag, An), the hydrogen molecule can be easily dissociated at Pd site, rather than at noble metal site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by +/- 1 of their corresponding neutral species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO- to AuO- for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO- to AuO- (except TaO-), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate ab initio density-functional calculations are performed to investigate the relationship of the ground-state crystal structures and electronic properties of Ag2BiO3 compound. The results indicate that Ag2BiO3 in Pnna phase, in which the bismuth atoms occupy the same Wyckoff positions, exhibits metallic conductivity, while in Pnn2 and Pn phases, Ag2BiO3 exhibits semiconducting character, which is in agreement with the experimental results. Charge ordering is indeed induced by the crystal inversion twin in the Pnn2 phase compared with the Pnna phase. In the low temperature phase Pn, the charge ordering is similar to that of Pnn2 phase although it is more distorted in Pn phase. In addition, the calculation indicates that the charge ordering is caused in the 6s electron rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.