227 resultados para silica gel functionalized


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hydrid material consisting of Eu(III)-schiff base complex covalently bonded to silica xerogel was synthesized via the sol-gel method using a Eu (N-propylene salicylimine ligand) complex modified with pendant triethoxysilane groups (Eu(III)(salenHSi)). The Eu(III)(salenHSi) complex is characterized by Fourier transform infrared (FT-IR) spectroscopy. Luminescent properties of the complex and the resulted hybrid silica xerogels have been investigated at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electroactivity of polyaniline was extended to pH = 14 alkaline media by preparation of a novel electrostatic interaction conductive hybrid from water-borne conductive polyaniline and silica network containing carboxyl groups via sol-gel process. In addition, the obtained conductive polyaniline hybrid film displayed very low conductivity threshold percolation and demonstrated excellent stability upon cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the mechanical performance and water resistance of water-borne conducting polyaniline film, conducting polyaniline/polyurethane-silica hybrid film was prepared in aqueous solution employing silanol-terminated polyurethane and methyltriethoxysilane as sol-gel precursors. The hybrid film showed surface resistivity of 10(8) Omega even though the conducting polyaniline loading was only 10 wt% (or 1.5 wt% of polyaniline), and the mechanical performance as well as water resistance was significantly improved, making it suitable for antistatic application. Therefore, a practical route to water-borne processing of conducting polyaniline is disclosed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of alpha-Fe2O3. The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 mu mol L-1-7.0 mmol L-1 with a detection limit of 4.0 mu mol L-1. The biosensor retained more than 97.8% of its original activity after 60 days' storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.